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ABSTRACT

Tracking the temporal evolution of features in time-varying data
remains a combinatorially challenging problem. A recent method
models event detection as a maximum-weight independent set prob-
lem on a graph representation of all possible explanations [35].
However, optimally solving this problem is NP-hard in the general
case. Following the approach by Schnorr et al., we propose a new
algorithm for event detection. Our algorithm exploits the model-
specific structure of the independent set problem. Specifically, we
show how to traverse potential explanations in such a way that a
greedy assignment provides reliably good results. We demonstrate
the effectiveness of our approach on synthetic and simulation data
sets, the former of which include ground-truth tracking information
which enable a quantitative evaluation. Our results are within 1% of
the theoretical optimum and comparable to an approximate solution
provided by a state-of-the-art optimization package. At the same
time, our algorithm is significantly faster.

Keywords: Feature Tracking, Graph Optimization, Approxima-
tion, Flow Visualization, Dissipation Elements

1 INTRODUCTION

The analysis of time-varying phenomena is a key method in scien-
tific visualization. The goal of feature tracking is to gain insight in
the spatio-temporal evolution of objects by automatically identifying
their respective correspondences in subsequent time steps. Clas-
sically, feature tracking approaches have focused on the tracking
of sparse features, i.e. structures which cover only a small portion
of the domain. Given a sufficiently high temporal resolution, these
approaches provide a robust way to match corresponding features. In
contrast, we are especially interested in the analysis of space-filling
features, i.e. structures which partition the entire domain. This is
largely motivated by our collaborators’ recent research in turbulent
fluid mechanics, which brought up the definition of dissipation el-
ements, a space-filling structure that partitions a flow simulation’s
domain into regions of homogeneous behavior of a scalar field’s
gradient [33, 44].

Including space-filling structures complicates the tracking due to
the high number of potentially contradicting candidate explanations.
Because several feature objects might be involved in an event, find-
ing an optimal explanation with respect to some similarity criterion
involves searching the power set of all candidate objects. Thus,
the number of available explanations grows exponentially with the
number of eligible objects. Several of these candidates will regu-
larly contradict each other because they assign the same objects in
different ways, which adds to the overall challenge.
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Recently, we introduced an approach that addresses these chal-
lenges by solving two successive graph optimization problems [35].
The first step solves a maximum-weight, bi-partite matching problem
in order to identify linear one-to-one assignments (cf. Figure 1 a)).
Based on this initial solution, the second step models the event de-
tection stage as a maximum-weight independent set problem. While
we use the initial matching stage to limit the search for event expla-
nations in the subsequent event detection stage, an optimal solution
to the latter remains NP-hard.

In this paper, we focus on that second stage. We propose to exploit
the specific structure of the independent set graph which results from
our way of modeling the event detection problem. In a nutshell, this
graph consists of a set of cliques of mutually contradicting event
explanations plus a number of cross-clique connections. Figure 1 b)
gives a schematic example. A valid, contradiction-free solution
to the event detection problem is equivalent to a subset of nodes
which contains exactly one node per clique, i.e. will select one
of the available explanations, such that no two selected nodes are
connected by an edge; this is the independent set property. Our
main idea is to align the optimization process along these cliques
in order to create a greedy assignment strategy. The details of this
construction are given in Section 3.

In Section 4 we analyze the performance of our approach and
show that despite its relatively straightforward greedy assignment it
provides reliably good solutions for a number of benchmark prob-
lems. Specifically, we use both synthetic and simulation data sets for
the evaluation. The former were specifically generated for evaluation
purposes, because they enable a comparison to ground truth data.
The latter result from direct numerical simulation of homogeneous,
isotropic turbulence. They are provided by our collaborators from
the Institute for Combustion Technology at RWTH Aachen Univer-
sity, who – as outlined above – also provide the main motivation for
this research. We compare the event detection results and runtime
performance to our earlier approach, which relies on the CBC solver
of the COIN-OR project [1]. In Section 5, we discuss our approach
with an eye on known limitations and more general observations,
before concluding in Section 6.

In summary, we make the following contributions. First, we
propose an optimized event detection method for feature tracking,
which is based on a careful analysis of the specific structure of
the underlying, model-specific independent set problem. Second,
we demonstrate the effectiveness and efficiency of this approach
by applying it to different synthetic and simulation data sets and
comparing the results to the solution found using the external CBC
solver.

2 RELATED WORK

Feature-based visualization is a core concept in scientific visual-
ization. It has particularly been used in the context of flow visual-
ization [27]. In general, features are loosely defined as objects of
interest (cf., e.g., [37]). Before tracking their evolution, however,
features have to be extracted. A full review of feature definitions
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and extractions is beyond the scope of this paper. Typical examples
include vortices [2, 15, 16, 41, 45], shocks [20, 24, 25], or topological
structures [10, 12–14, 34]. These examples share the property that
they are sparse with respect to the input domain, i.e. they cover
a relatively small portion of the data domain. This fact has been
highlighted as a key advantage, because it substantially reduces the
amount of data that is required for subsequent analysis [43]. In con-
trast, our approach targets a specific feature definition: dissipation
elements [44] which are space-filling by definition.

Feature tracking algorithms aim at identifying the temporal evo-
lution of features in a series of raw data snapshots {St}1≤t≤T . Gen-
erally, it is assumed that the snapshots are sampled densely enough
in the temporal dimension to allow for a faithful reconstruction of
temporal relations.

However, finding a globally optimal assignment – i.e. one that
maximizes the feature similarity – over all T time steps is NP-
complete for T ≥ 3 [18, 26] and remains a challenge in scientific
visualization [17]. In scientific visualization, approaches are often
based on the idea of extending a feature path from time step ti
to ti+1. This idea was introduced by Samtaney et al. [31]. They
define correspondence criteria for the canonical event explanations
of continuation, split, merge, birth, and death. In order to determine
the evolution of features, they propose a greedy strategy, which
implicitly resolves conflicts by removing feature objects from the
search space once a correspondence is found. Silver and Wang utilize
the normalized volume difference of objects in order to establish
correspondences [39]. This method implicitly builds a bi-partite
graph w.r.t. the overlap between feature objects from subsequent
time steps. Event detection is included by comparing a single object
from one time step to all combinations of overlapping feature objects
in the neighboring time step. The used overlap metric has later been
extended to unstructured meshes [40], and AMR data [6], and has
been implemented on distributed memory parallel machines [5].

Inspired by a computer vision approach [36], Reinders et al. per-
form similarity computation based on abstract attribute sets [28].
They describe features by a finite number of attributes, extrapolate
these attributes to the target time step, and establish correspondences
by comparing the extrapolation to the attributes of candidate objects.
In order to facilitate interactive feature tracking of individual fea-
tures, Muelder and Ma combine the idea of extrapolation with the
overlap metric [21].

Clyne et al. develop a physical model to establish feature corre-
spondences utilizing the underlying governing equations [7]. In or-
der to identify a match in a subsequent time step, they use a pathline
starting at the point of minimal dissipation. Sauer et al. also make
use of particle paths to determine feature correspondence between
time steps, they propose an approach which uses pre-computed
particle data in order to match features over several time steps [32].

Theisel et al. formulate the tracking problem by means of stream-
line integration in the feature flow field [42] and show the effective-
ness by tracking critical points in a 2D vector field. This approach
was later refined w.r.t. (numerical) stability by Weinkauf et al. [46].
Reininghaus et al. refrain from numerical computations altogether by
introducing combinatorial feature flow fields [29]. Garth et al. pro-
pose an approach which is capable to track vector field singularities
by explicitly detecting structural changes in the vector field in the
form of bifurcations [9].

Tracking algorithms open up a number of possibilities for a
follow-up analysis of the data sets under consideration. Ozer et
al. propose an approach to investigate the group behavior of multiple
features [23]. Additionally, they introduced an approach which uses
Petri Nets in order to detect inter-feature interactions [22]. Griffith et
al. discuss the tracking and subsequent analysis on simulated cloud
formations [11], while Doraiswamy et al. base their approach on 2D
satellite imagery [8]. Laney et al. track surface segments in turbulent
mixing processes with a method related to the one by Samtaney

et al. They use topological concepts in order to segment the in-
terface surface [19]. Similarly, Bremer et al. propose an approach
in order to analyze the flame surface in a simulation of turbulent
combustion [4].

Recently, Saikia and Weinkauf proposed a method which also
utilizes ideas from graph optimization in order to solve the tracking
problem [30]. In contrast to our approach, they aim at maximizing
the similarity over all time steps for a single feature. In order to do so,
they establish a directed acyclic graph which represents the tracking
problem over all time steps. On this graph, they use Dijkstra’s single
source shortest path algorithm to find the temporal evolution of a
single feature.

3 METHOD

As stated in the introduction, we follow up on the approach by
Schnorr et al. [35]. They model the tracking problem between sub-
sequent time steps by two successive graph optimization problems.
The first phase uses a maximum-weight maximum-cardinality match-
ing on a bi-partite graph to establish a set of linear continuations.
These make up the vast majority of explanations – an assumption
that is backed by previous work [39] and domain experts [44]. The
linear assignments designated by the matching either directly repre-
sent a continuation or identify the largest component participating
in a merge or split event.

In the second step, events are detected by augmenting the match-
ing edges with additional connections which results in 1 : n or n : 1
relationships. This is done by constructing a graph that contains all
non-trivial, potential event explanations – i.e., splits and merges –
for all feature objects which have not been covered by the matching
in the first phase. The construction of this graph is informed by
the matching and, thus, the connections identified by the match-
ing are part of any valid explanation. While nodes in this graph
model potential explanations, edges signify mutual contradictions
between explanations. These contradictions arise from the fact that
two explanations assign at least one specific feature object to an
event in different ways. Hence, not both these events can be valid at
the same time. A valid, i.e. conflict-free assignment thus forms an
independent set on this graph. By adding weights to each node, i.e.
the similarity score of that specific explanation, this is turned into a
maximum-weight independent set problem. Finally, all nodes that
are not assigned after both optimization problems are assumed to be
involved in a birth or death event.

In order to find an approximate solution to the NP-hard inde-
pendent set problem, Schnorr et al. rely on the CBC solver of the
COIN−OR project. They suggest to find a solution within 99%
of the optimal score. In contrast, we propose a new algorithm to
solve the independent set problem by exploiting the specific struc-
ture of the underlying graph. In the following we will first detail this
structure and then describe our greedy assignment strategy which
eventually leads to a faster solution process of comparable solution
quality.

3.1 Graph Construction
The maximum-weight independent set problem is defined over a
graph G = (V,E,w) on nodes V , edges E and a weight function w
which assigns a weight to each node.

The nodes model potential explanations. We construct these event
explanations by traversing the matching edges resulting from the
initial phase. A schematic example of the matching resulting from
the initial phase is given in Figure 1 a). Matching edges are depicted
with thick edges. All other edges are edges with a positive similarity
value and, hence, valid but not part of the matching solution. First,
all possible split explanations are constructed for each edge (os,ot)
covered by the matching. A split is a 1 : n assignment and, thus,
contains one node from the node set in time step Ti and a set of nodes
from Ti+1. In order to find all valid explanations, we enumerate all



a) b) c)

Figure 1: Illustration of our graph construction and the resulting search tree. a) The bi-partite matching resulting from the initial phase of our
algorithm. One-to-one assignments found by the matching are depicted as thick lines. All other valid edges are depicted as thin lines. Additionally,
all nodes considered as participating in a split with the node u1 are highlighted in gray. b) For each matching edge a set of explanations is
constructed to augment the initial matching solution in order to detect events. This results in a graph containing all non-trivial, potential event
explanations. Nodes in this graph resemble potential explanations; edges model mutual contradictions between these explanations. All nodes
resulting from the same matching edge are conflicting and, hence, form a clique in the graph. Thus, we can choose at most one node in each
clique. Since each clique has a trivial choice given by the continuation (only the matching edge with no additional edges) which has no edge
to any other clique, we can choose exactly one edge per clique. c) The search space can thus be modeled as a search tree over the set of
cliques and the selection is essentially constructed by a depth-first search over this search tree taking the cross-clique conflicts into account. A
cross-clique conflict for the nodes u1→ v1,v3 and u3→ v3,v4 is depicted by a dashed line between the nodes. Since this path does not resemble a
valid solution, the subtree is grayed out.

currently unmatched objects õ ∈ Ti+1 which are connected by a
valid edge – i.e. an edge in the bi-partite graph with a positive
similarity score – to the matched node os ∈ Ti given by the matching
edge. In Figure 1 a) the node u1 is connected to v1 by a matching
edge. Additional candidates which are connected to u1 are v2 and
v3. The power set of all these candidates is computed and for each
element of the power set, we construct one event explanation. This
explanation consists of the two nodes given by the matching edge
and the additional nodes given by one element of the power set. Thus,
each element of the power set results in one possible explanation.

The original continuation represented by the matching edge is in-
cluded by using the empty set as extension, i.e. not adding additional
nodes. In Figure1 b) the resulting nodes which model the potential
explanations are illustrated for the three matching edges given in the
schematic example. All possible merge explanations based on the
node ot of the matching edge are constructed analogously. Since
all possible explanations are stored and not chosen greedily while
their construction, the order of traversing the matching edges will
not affect the results.

A node’s weight w(n) is given by the similarity benefit which is
given by the union overlap normalized by the union volume of all
corresponding feature objects.

Edges in the independent set graph model contradictions between
any two explanations. These arise when two explanations use at
least one common feature object either from Ti or Ti+1: they provide
different explanations for the temporal evolution of the same feature
object. We observe that all explanations which result from the same
matching edge are conflicting by definition. Thus, these form a
clique in the independent set graph. In Figure1 b) all nodes which
are part of the same clique since they result from the same matching
edge are connected by thick edges. Cross-clique connections are
indicated by dashed lines. Additionally, all explanations which are
part of the same clique are highlighted in the same color.

In practice, we note that the power set can become prohibitively
large. We thus restrict the node set’s size by keeping only explana-
tions that provide a higher weight than the initial linear assignment.
In addition, we introduce a user-defined cutoff, which we typically
set to 256 potential explanations per matching edge, a value that we
empirically found to be sufficient for all our experiments. For more
details, we refer to [35].

A valid solution, i.e. a conflict-free selection of explanations,
which ensures the global maximization of feature similarity is equiv-
alent to a maximum-weight independent set on the graph of all

explanations. This means a set of mutually non-adjacent nodes with
a maximum overall weight corresponding to non-conflicting expla-
nations – splits, merges, and continuations – which describe the
relation of feature objects in two subsequent time steps. All feature
objects which are not assigned after the second step are assumed to
be the result of a birth or death event.

3.2 Greedy Selection Event Detection

We utilize the specific structure of the independent set graph as the
basis for a greedy assignment strategy. As stated above, the graph
consists of cliques, where each clique is spawned by all explana-
tions which are constructed based on the same matching edge, and
additional inter-clique edges. These cliques have a minimum size of
two nodes because a clique is just spawned if there is at least one
explanation increasing the overall weight compared to the matching.
The maximum number of nodes per clique is determined by the
cutoff value of 256.

Since all nodes in a clique are connected by an edge and, thus,
conflicting we can choose at most one node in each clique for the
independent set. Because we want to maximize the overall weight,
we aim to choose at least one node per clique. Thus, a valid solution
will pick exactly one explanation from each clique. Hence, the
search space for a solution can be modeled as a search tree over the
set of cliques as depicted in Figure 1 c). The trivial choice in each
clique is always the node representing the continuation, i.e. only the
matching edge, because this node has no edge to any other clique
by definition. Thus, we know that there always is a valid choice
in each clique. Due to the fact, that each choice may affect other
choices in the subsequent search, a solution has to be constructed in
an inherently incremental fashion. This leads to a sequential solution
process.

We implement this process by a greedy selection strategy. The
idea is to iterate over all cliques and choose the best non-conflicting
explanation that remains available. Thus, the selection is constructed
by a depth-first traversal of the search tree which respects potential
cross-clique conflicts. In order to arrive at a good solution, we want
to ensure that important choices, i.e. the ones where the difference
between the best and the second-best explanation are large, get re-
solved first. Thus, we sort the list of cliques according to decreasing
weight difference between their two highest-weight nodes. Then,
we iterate linearly over all cliques. In each step, we pick the highest-
weight node that is not incident to a previously picked one. If the
graph instance did not have any inter-clique edges, this would lead



Table 1: Summary of data set sizes for the data sets used in our evaluation.

Data Set Spheres Voronois Vortices Dissipation Elements Dissipation Elements
(small) (large)

Dimensions 2563 2563 2563 2563 5123

Size per field[MB] 64 64 64 64 512
Number of time steps T 200 200 2,000 2,000 100
Avg. #features per TS 189 141 1,135 28,979 109,893

to the optimal solution, i.e. the one that features the highest-weight
node for each clique. By making the high-difference choices first, we
ensure that the penalty for choosing the second-best option steadily
decreases.

We note that our selection strategy mimics the behavior of earlier
feature tracking algorithms [38] by choosing the best available option
in a greedy fashion. We still keep the advantage of considering both
merge and split events at the same time, while the approach by Silver
et al. always prefers splits over merges due to the implicit order in
which these events are analyzed by the algorithm. In more complex
cases however, specifically for space-filling features, our approach
retains the flexibility to look into other options and thus returns a
satisfactory solution whereas the implicit ordering in Silver’s method
precludes this opportunity as demonstrated in [35].

Eventually, the greedy depth-first search leads to a conflict-free
assignment which solves the event detection problem. The com-
plexity of this process is linear in the number of cliques times the
maximum size of a clique. The latter is bound by the cutoff value
introduced above leading to a linear solution process with respect to
the number of features.

The quality of the eventual solution is largely determined by the
initial ordering of the cliques. We considered other criteria, including
decreasing difference between largest weight and smallest weight
in a clique and decreasing standard deviation of the weights within
a clique. But experiments quickly revealed that these choices led
to uniformly inferior results. Therefore, we do not report detailed
results in the next section.

4 RESULTS

In this section we analyze the performance of our approach by ap-
plying it to different synthetic and simulation data sets containing
both sparse and space-filling features. Additionally, we present a
comparison of our approach to the method by Schnorr et al. [35]
which uses a 0.99-approximation by an external solver that does not
harness the specific problem structure for solving the independent
set. First, we test the approach on synthetic data sets which enable
a quantitative evaluation due to the availability of ground truth in-
formation. Even though synthetic data sets do not fully emulate the
behavior of the actual simulation data, they facilitate measuring the
approach’s performance in a controlled scenario. Second, we test
our approach on different simulation data sets and perform a phe-
nomenological analysis by manual visual inspection of the results.
The characteristics of the synthetic and the simulation data sets are
given in Table 1.

We investigated the tracking results for a large number of features.
Afterward, we selected representative cases from this overall set,
and only show the actual features participating in the event under
consideration. In order to ease the distinction of different features
over time they are color coded by randomly assigned colors. If a
feature continues, it keeps its color. If a split occurs, only the largest
part keeps the color and all other participating structures receive a
new randomly assigned color. Similarly, a merged feature receives
the color of its largest participant.

In order to compare our results to the method by Schnorr et
al. [35], we first compare the results regarding the ground truth
information for the synthetic data sets. Second, we compare the
runtimes and the weights regarding the independent set problem

for both approaches on the synthetic and the simulation data sets.
Additionally, we compare the resulting weights to the theoretical
maximum which is given by choosing the highest weighted node in
each clique without respecting conflicts. We detail these steps in the
following sections.

4.1 Synthetic Data Sets
A comprehensive, formal evaluation would require the access to
ground truth information. For simulation data sets this is usually not
available. In order to enable the quantification of our algorithm’s
tracking performance, we used two different types of synthetic data
sets including all types of event explanations as well as the corre-
sponding ground truth information. The objects and their temporal
evolution are generated to cover different aspects of the simulation
data sets under consideration.

In order to assess the tracking performance, we tracked both
data sets using our approach and the reference algorithm. We then
compared the respective results to the ground truth information and
the approaches regarding their accuracy w.r.t. the ground truth. In the
following sections, the data set generation and the tracking results
are discussed in more detail.

4.1.1 Sparse Sphere Data Set
The first synthetic data set represents a sparse setting containing
randomly distributed spheres which differ in their diameter. Time
variance is simulated by moving each object in the data set indepen-
dently along a local velocity field of a simulation of homogeneous,
isotropic turbulence. Each connected component of mutually inter-
secting spheres in the data set is considered as a single feature object
obtaining a unique ID. A continuation is recorded if a connected
component contains the same defining spheres after the temporal
displacement. In the case that objects overlap or break apart due to
the temporal displacement of their constituent spheres, a merge or
split event is stored, respectively. To enable birth and death events,
spheres either enter or leave the domain, respectively. Additionally,
birth events in the inner part of the domain are are included by search-
ing for empty regions and seeding new small spheres which grow
in the following time steps. Analogously, death events are enabled
by searching for non-connected spheres whose size is decreased
until they disappear. Furthermore, the combination of splits and
merges including the same object in one time step is excluded since
such a combination does not reflect the evolution in experimental
data sets for a sufficiently high temporal resolution. This is done
by artificially splitting such components in a subsequent step and
assigning different IDs.

4.1.2 Space-Filling Voronoi Data Set
The Voronoi data set is defined by the Voronoi diagram of a randomly
distributed 3D point set. Each cell serves as a single feature object.
Due to the definition of Voronoi cells, this setting is space-filling. All
features are moved across the domain by a single translation vector
to simulate time variance. The boundaries are handled periodically
such that seed points which leave the domain re-enter on the opposite
side.

Additionally, split and merge events are included in this data set.
In order to create a split, a single seed point is duplicated on its
position. In the following time steps, both seed points are moved



Table 2: Ground truth and tracking results for the sphere and the Voronoi data set regarding the individual events and the sum of all events.

Sphere data set Voronoi data set
Event #Events #Detected #Correctly % Correctly #Events #Detected #Correctly % Correctly
Type Ground Truth Events Detected Detected Ground Truth Events Detected Detected

Continuation 32,272 32,258 32,186 99.73 27,304 27,336 27,300 99.99
Split 1,744 1,713 1,696 97.25 293 279 275 93.86

Merge 1,926 1,979 1,847 95.90 186 177 177 95.16
Birth 810 919 801 98.89 0 3 0 -
Death 577 717 560 97.05 0 0 0 -
Sum 37,329 37,586 37,090 99.36 27,783 27,795 27,752 99.89

in opposing directions in addition to the overall movement of the
whole data set. As the two points diverge, the element is split and the
respective event is stored. For a merge event, one randomly selected
seed point and its nearest neighbor are moved towards each other and
merged to a single point if their distance is below a certain threshold.
This movement is independent from the overall movement of the
data set; the respective event is stored in the ground truth. Please
note that birth and death events are not included in this data set. The
rationale behind this exclusion is the absence of background in the
data set which would be necessary for birth and death events.

4.1.3 Performance on Synthetic Data Sets
In order to measure our algorithm’s performance and to compare
it to the reference solution we tracked 200 time steps of both data
sets – the sphere data set and the Voronoi data set – with both
algorithms. Table 2 shows the results with respect to the ground
truth information. Listed are the absolute number of detected events,
the number of correctly detected events, and the percentage of the
correctly detected events per event type. Additionally, the sum of all
events is listed.

Please note that both approaches provide exactly the same results
in both cases. Furthermore, not just the raw numbers regarding the
ground truth but the complete tracking result is identical. Thus, the
resulting values in the table are just listed once in order to show
that the greedy solution for the independent set provides correct
tracking results for more than 90% for all types of event explanations
regarding both data sets. This suggests that our greedy approach is
able to provide reliable tracking results for sparse and space-filling
data sets.

4.2 Simulation Data Sets
To evaluate our approach on real world data sets, we analyze data
sets from turbulence research phenomenologically based on manual
visual inspection of the resulting feature paths obtained by our al-
gorithm. To this end, we take different data sets into account which
contain sparse and space-filling features. All considered data sets
result from a direct numerical simulation of homogeneous, isotropic
turbulence inside a periodic box. The first data sets comprises
vortices, the two other data sets both contain extracted dissipation
elements (DEs) as features while they differ in size and complexity.

The vortices have been extracted by thresholding for high vorticity
magnitude resulting in features which are sparse with respect to
the overall data domain. We include this case in our evaluation
since similar settings have been used in order to evaluate tracking
algorithms [28, 31, 38, 39].

The two other data sets containing DEs are included to evaluate
the performance of our approach for space-filling features. They
directly result from our collaborators’ research. DEs describe the
geometric structure of small-scale turbulence; their extraction is
performed by a validated code provided by our collaborators [3].
Both data sets have a relatively high temporal resolution; every tenth
simulation time step has been written to disk. They have a spatial
resolution of 2563 voxels and 5123 voxels, respectively.

4.2.1 Vortices in Isotropic Turbulence
In our analysis, we investigated the tracking results for a number of
vortices regarding their plausibility. This phenomenological assess-
ment is in line with evaluations in previous work [21, 31, 32, 39]. In
Figure 2 an exemplary tracking result of our approach for a single
vortex is shown. For the sake of clarity, we additionally included
the corresponding tracking graph. The vortex splits into two smaller
vortices in the third time step – a larger pink one and a smaller
orange one. These two vortices move independently over the next
few time steps until the smaller one splits again in the last time step.
Similar settings and evolutions have been evaluated in this context.
In summary, based on the inspected tracking results, we found that
our algorithm is able to provide plausible results for this data set.

4.2.2 Dissipation Elements
Analogously to the vortex data set, we inspected several evolutions
in the two DE data sets for their plausibility. Figure 3 illustrates
the exemplary evolution of a DE in the 2563 case involving one
merge and two split events and the corresponding tracking graph.
First, the feature splits in the second time step into the larger orange
component and the smaller yellow one. These features do not move
apart due to the space-filling setting. Second, these two features
merge again in the fifth time step resulting in the large orange DE.
Finally, a smaller green component splits apart from the large orange
feature in the sixth time step. The manually inspected results are
comparable to the results by Schnorr et al. [35] and backed by our
collaborators. In conclusion, we argue that our greedy approach also
provides plausible results in case of a space-filling setting.

4.3 Comparison Regarding the Independent Set
As mentioned in the introduction we compare the event detection re-
sults and the runtime performance of our greedy assignment strategy
to our earlier approach which uses the CBC solver of the COIN-OR
project. To this end all available time steps of all data sets have been
tracked and their runtimes regarding the independent set graph setup
as well as the runtimes for solving the independent set problem have
been measured. Additionally, we reported the resulting weight for
the independent set w.r.t. both algorithms as well as the theoretical
maximum given by the sum of the maximum values in each clique.
All measurements have been performed on a dual socket server fea-
turing two Intel®XEON® E5-2695 v3 CPUs (28 cores @ 2.3 GHz
each) and 512 GB of RAM.

Figure 4 summarizes the results of our measurements. Each row
represents the results for one of the data sets – spheres, voronois,
vortices, and DEs (2563 and 5123). The column on the left shows
a box-plot for the resulting independent set weights. For both ap-
proaches all time steps are inspected and the results are normalized
by the theoretical maximum. Regarding the synthetic data sets we
see equivalent values for both approaches which is backed by the
comparison w.r.t. the ground truth information. For the vortex data
set, we see similar results as for the synthetic data set. In case of the
two DE data sets, the median of the normalized quality is slightly
higher for the approach using the CBC solver. However, the results
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Figure 2: Depiction of the evolution of a vortex (bottom row) including the corresponding tracking graph (top row). The selected vortex splits into
two components in the third time step. Additionally, the smaller component splits again in the seventh time step.
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Figure 3: Illustration of the evolution of a DE and the corresponding tracking graph. The DE is involved in several events. First a smaller component
splits apart in the second time step, Second, the component merges again with the larger one in the fifth time step. Finally, in the sixth time step a
smaller part of the DE breaks apart again.

are comparable since the values for the greedy strategy are also
above 99% of the theoretical maximum which was the bound used
for the approximate solution by the solver.

In addition to this comparison regarding the weights, we inspected
several feature evolutions based on differences between the two ap-
proaches. One of these differences is depicted in Figure 5. The
images show the features within the former time step, the overlap
of these features with the feature in the latter time step which is
assigned to two different events, and the different evolutions pre-
sented by the two approaches. The overlap for the orange feature
with the two other features in the former time step seems similar by
manual visual inspection. Thus, the assignment of the orange feature
is ambiguous. This setting is demonstrative for a number of similar
situations we investigated. For all these cases, the assignment solely
based on the two time steps is ambiguous by manual inspection. One
option to solve such problems is an assignment which is additionally
weighted based on the path length of the corresponding feature as
proposed by Reinders et al. [28]. However, this additional weighting
might have implications on other parts of the solution and is, hence,
an idea we plan to investigate in future work.

In addition to the weights of the independent set, we investigated
the runtimes of both approaches. The middle and the right column
in Figure 4 show the runtimes for both approaches for all data sets
for the first 100 or 50 time steps, respectively. The middle column
compares the runtimes for the graph setup, while the right column
shows the comparison for the runtimes for solving the independent
set problem. Furthermore, Table 3 lists the average runtimes over all
time steps for the setup and the solution for both algorithms as well
as the corresponding speedup. For both time measurements we see a
speedup regarding all data sets – in case of the synthetic data sets the
setup decreases to 0 on average. Especially, the speedup regarding
the solution of the independent set is mentionable. Moreover, the
graphs in Figure 4 reveal that apart from single outliers the runtime

for solving the independent set seems to be more stable in contrast
to the solver. This observation is justified by the linear complexity
which was mentioned in Section 3.

Beyond being uniformly faster across all data sets, there is another
interesting observation to be gleaned from the performance data:
the speedup decreases with increasing complexity. We offer the
following explanation. For simple cases, specifically sparse features
which lead to very few cross-clique connections, the greedy selection
encounters little choice: the highest-weight feature in each clique
will almost always be pickable and the optimization degenerates into
a linear path traversal. This is naturally very fast. In contrast, the
general COIN solver cannot exploit the specific problem structure
and thus has to run a full optimization process, which is comparably
costly. The gap closes as problem size and complexity increase;
the relative speedup of our solution decreases. This is evident for
both the synthetic data (spheres vs. voronoi) and the simulation
data sets (vortices vs. dissipation elements). In case of the synthetic
data set the speedup decreases from 276.5 to 210.0; the speedup of
6112.0 regarding the vortex data set decreases to 96.52 and 33.34
for the 2563 and the 5123 DE case, respectively (cf. Table 3). The
space-filling cases will feature frequent inter-clique edges and thus
the greedy assignment will have to execute more comparisons and
will have to frequently select nodes other than the highest-weight
one. This process is costly, largely because in involves a re-travesal
into already seen parts of the independent set graph. In comparison,
the solution stratgey of the COIN solver is not susceptible to this
phenomenon. Thus, our algorithm still finds a comparable solu-
tion much faster, yet the gap becomes smaller for more complex
problems.

In summary, the measurements demonstrate that the results pro-
vided by our greedy assignment strategy are comparable to the
0.99%-approximation of the optimal solution provided by an exter-
nal solver while the runtime is decreased substantially.



Figure 4: Summary of the measurements regarding our greedy approach and the CBC solver. Each row depicts the results for one of the data
sets. The graphs show a box-plot for the independent set weights normalized by the theoretical maximum (left), the distribution of the runtimes
regarding the setup for the independent set graph (middle), and the distribution of the runtimes w.r.t. the solution of the independent set (right).
For the sake of readability, the graphs comparing the runtimes only include the first 100 and 50 time steps, respectively.



Table 3: Summary of the average runtimes reagrding the independent set graph setup and the solution for the greedy approach and the reference
approach using the CBC solver.

Data set Avg. setup Avg. setup Avg. speedup Avg. solution Avg. solution Avg. speedup
COIN [ms] greedy [ms] COIN [ms] greedy [ms]

synth. spheres 12.774 0.000 — 2.779 0.010 276.50
synth. Voronois 8.166 0.000 — 2.111 0.010 210.00
vortices (2563) 234.604 199.917 1.17 6.115 0.001 6112.00

diss. elements (2563) 9799.532 7949.669 1.23 88678.282 918.759 96.52
diss. elements (5123) 121018.959 113456.714 1.07 895430.714 26856.694 33.34

COIN-OR CBC Solver

Greedy

t t+1 t+1t vs. t+1

Figure 5: Depiction of different assignments detected by our approach
and the reference solution. The images show the former time step
(left), the overlap of the differently assigned (orange) feature with
the features in the former time step (middle left), and the resulting
assignments found by our greedy approach (middle right) and the
CBC solver (right).

5 DISCUSSION

The main goal of the method proposed in this paper has been to
exploit the specific structure of the independent set graph in order to
accelerate the event detection stage of feature tracking while main-
taining good-quality results. In summary, our results demonstrate
that the approach provides reliable results which are comparable to
those found by a state-of-the-art optimization tool. In this section,
we discuss our approach with regard to design decisions, known
limitations, and more general implications.

This work was mainly motivated by the idea to increase the
performance of the workflow outlined in [35]. Thus, we originally
set out to devise a parallel algorithm for feature tracking. In order
to do so, we focused on the stage that comprised the largest part
of the computation: the event detection. The initial analysis of
the search space suggested that the resulting search tree would be
amenable to a parallel branch and bound strategy. To this end, we
implemented a task-based strategy which traverses the search tree
while simultaneously pruning suboptimal paths w.r.t. the current best
solution. This scheme had to construct the search tree incrementally
because a full, up-front construction would lead to a prohibitively
large structure. In addition, a branch and bound scheme needs a
quick first guess at a good solution in order to have bound to prune
against. Our experiments revealed that this first bound – chosen to
be a greedily selected, valid path in the search tree – was almost
always very close to the achievable optimum. Hence, a sequential
depth-first search showed very good results in practice; our parallel
branch-and-bound algorithm did not significantly improve on the
results while still consuming more compute time. Thus, we currently
resort to the sequential greedy solution. Despite this finding, the
matching algorithm and the setup for the independent set graph –
which now become the most time consuming parts of the overall
computation – do not yet run in parallel. We plan to address these in
order to scale the tracking to larger cases.

One important aspect for feature tracking in general is the chosen
similarity criterion. Currently, we use the normalized overlap in
both phases of our tracking algorithm: we compute the intersection
of the two feature objects in question and normalize it by the vol-
ume of the larger feature. This may result in a bias towards larger

feature objects. However, our approach is oblivious to a switch
of the applied similarity metric. As mentioned in Section 4.3, we
found several cases where the two approaches for computing the in-
dependent set provided different explanations which are ambiguous
based on manual visual inspection solely based on the respective
time steps. We thus plan to investigate other similarity metrics, e.g.
abstract attribute sets as proposed by Reinders et al. [28] or particle
data as used by Sauer et al. [32], in order to resolve these issues.

Changing the similarity metric might have effects on the search
space of the independent set problem. Thus, we plan to investigate
different ordering strategies for the node traversal in our search tree
in the context of different similarity metrics. We already considered
different strategies for the current version of our approach and initial
experiments revealed that ordering the cliques by decreasing weight
difference between the two highest-weight nodes led to the best
results. However, with a switch of the similarity criterion, this
choice might have to be re-considered.

Finally, the cumulative results of our recent paper [35] and the
above analysis give rise to a more general suggestion w.r.t. fea-
ture tracking. We initially started our research by arguing that
feature tracking becomes significantly more challenging in a dense,
i.e. space-filling setting. Indeed, we observe that sparse data sets
result in smaller cliques than their space-filling counterparts. In
addition, sparse data sets lead to fewer cross-clique connections. In
terms of our model, this leads to the observation that the independent
set graphs of sparse problem instances are less complicated to solve
than those for space-filling data. Therefore, we did find significant
advantages of the original two-stage optimization algorithm over
a reference tracking algorithm for sparse features. However, the
current study add more detail to the discussion. Finding an optimal
assignment remains an NP-hard problem in general, regardless of
sparse or dense input data. However, our results suggest that real
world problem instances for the tracking problem usually are far
from worst case scenarios. Specifically, in a sparse feature setting
the search for a conflict-free, similarity-maximizing solution will
often be straightforward. Thus, greedy strategies such as the one
proposed by Silver et al. [38] or the one discussed above will lead
to reasonably good results. For dense settings the problem becomes
more complex. Here, a straightforward greedy approach is suscep-
tible to ordering artifacts, as shown in [35]. However, our greedy
search, which relies on a limited view of the overall search space,
still provides results on par with state of the art optimization pack-
ages as shown in this paper. This ability to abide by a greedy method
avoids the need for a general, uninformed optimization run and thus
enables us to provide good solutions at a fraction of the runtime cost.

6 CONCLUSION

In this work, we have presented an optimized event detection method
for feature tracking which exploits the specific structure of the inde-
pendent set graph containing all possible event explanations. Our
approach is based on the idea to align the optimization process for
the independent set along the cliques which are spawned by the
mutually contradicting event explanations in order to create a greedy
assignment strategy. To demonstrate this capability, we applied the



approach to a variety of synthetic and simulation data sets. In addi-
tion to a comparison with the ground truth result for the synthetic
data sets and a manual visual inspection backed by our collaborators
for the simulation data sets, we compared the results and runtimes for
the independent set problem to the approach by Schnorr et al. [35].

Several aspects for future work have been discussed in the previ-
ous section. In particular, we plan to investigate additional similarity
metrics in order to reliably solve ambiguous assignments in the event
detection. In addition, we plan to implement and assess other order-
ing criteria to align the optimization process in order to increase the
overall weight of the independent set based on the chosen similarity
metric.

In summary, the event detection method proposed in this
work provides reliable results which are comparable to the 99%-
approximation of the theoretical optimum provided by an external
solver while the overall runtime is significantly decreased.
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