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ABSTRACT

Simulating a realistic navigation of virtual pedestrians through
virtual environments is a recurring subject of investigations. The
various mathematical approaches used to compute the pedestrians’
paths result, i.a., in different computation-times and varying path
characteristics. Customizable parameters, e.g., maximal walking
speed or minimal interpersonal distance, add another level of
complexity. Thus, choosing the best-fitting approach for a given
environment and use-case is non-trivial, especially for novice users.

To facilitate the informed choice of a specific algorithm with a cer-
tain parameter set, crowd simulation frameworks such as Menge [3]
provide an extendable collection of approaches with a unified inter-
face for usage. However, they often miss an elaborated visualization
with high informative value accompanied by visual analysis methods
to explore the complete simulation data in more detail – which is
yet required for an informed choice. Benchmarking suites such as
SteerBench [14] are a helpful approach as they objectively analyze
crowd simulations, however they are too tailored to specific behavior
details. To this end, we propose a preliminary design of an advanced
graphical user interface providing a 2D and 3D visualization of the
crowd simulation data as well as features for time navigation and an
overall data exploration.

Index Terms: H.5.2 [User Interfaces]: User Interfaces—Graphical
user interfaces (GUI);

1 INTRODUCTION

A crowd simulation describes the autonomous navigation of a plethora
of virtual entities through a virtual scene. While animals, i.e., flocks or
schools, are only considered rarely, the entities referred to are mainly
virtual pedestrians. Summarizing Pelechano et al. [11], crowd simu-
lations thereby typically comprise the following two components: (1)
In the global path planning component the scene’s complete walkable
space is considered to extract a high-level path per pedestrian, guiding
the entity to its intended, final goal. (2) In the local path planning
component the global path is refined by numerous, connected interim
paths. These are chosen based on the current local surrounding of a
respective pedestrian as well as the anticipated dynamic environmen-
tal chances due to, e.g., other pedestrian paths. While unnecessary
movements of a pedestrian are minimized or avoided (accounting for
a path’s smoothness and efficiency), the paths are collision-free (w.r.t.
to other entities as well as the scene itself) and guide the pedestrians
constantly towards their final goals (goal-directed).

Algorithmically, both components can be modeled in various ways.
Established methods for the global path planning require the scene’s
walkable space described as graph structures, i.e., as navigation
meshes or roadmaps [7]. Search algorithms, i.e., A* or vector flow
fields [2] are then used to compute the high-level path to the final
goal. For the local path planning common approaches are social force
models [5, 6], rule-based models [12] and predictive models [4].
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Although numerous solutions for the complex sub-problems of
path finding in crowd simulations exist, the quality of the computed
paths differ strongly in computation-related and path-related aspects.
Computation-related factors are, e.g., the overall computation time
per algorithm and memory usage. For the latter category, aspects like
the smoothness of the computed paths or the duration till an entity
reaches its final goal vary, influencing the naturalness of the resulting
crowd behavior. In addition, various algorithms are parametrized,
allowing knowledgeable users to adjust and thus fine-tune the
computed paths to the virtual environment and pedestrian use-case.
In case of a stressful evacuation scenario, the minimal accepted inter-
personal distance between neighboring pedestrians might be reduced
compared to low-stress simulations, while the maximal walking
speed might be increased(e.g., [10]). Thus, choosing the best-fitting
approach for a given environment and use-case is non-trivial.

A first valid step is to visually evaluate the global look-and-feel of
a crowd simulation [9]. This step is facilitated by crowd simulation
frameworks such as Menge [3] which provide collections of widely
used approaches through a unified interface. Thus, users are able
to quickly test different mathematical models in a given environment.
Furthermore, the modularity of these frameworks allows a simple
extension through the addition of new approaches.

In a second step, a more sophisticated evaluation based on objective
grading approaches and metrics [9, 14] is preferable to further ease
the selection process of appropriate approaches. One sample program
for such an evaluation is the benchmark suite SteerBench [14] as part
of the framework SteerSuite [13], which provides a set of universal
metrics to score crowd algorithms. SteerSuite additionally provides
an elaborated crowd visualization with a high informative value.

SteerBench focuses on a set of specified test cases, which cover
“common, frequently appearing scenarios, but with challenging,
worst-case parameters” [14]. Although additional flexibility is given
by means of customizable scenarios, the suite’s key focus is analyzing
certain details of the locomotion behavior. This is an inevitable
approach when developing own crowd algorithms or improving exist-
ing ones. However, the application of our tool is selecting an existing
crowd algorithm for a use-case specific environment and agent be-
havior, while adapting the algorithm’s parameters to fit the use-case.

To the best of our knowledge no such general algorithm fine-tuning
suites are available. Thus, we contribute a preliminary design of an
advanced graphical user interface (GUI) providing a first set of basic
visual and analytical evaluation options for given crowd algorithms
building upon Menge. A global look-and-feel evaluation is provided
by a linked 2D and 3D view visualizing the virtual entities based on the
positions computed by Menge’s simulation core. Basic features such
as manually altering parameters of the respective simulation allow an
easy crowd adaption. For a more sophisticated evaluation, a proper
time navigation is available as well as a data exploration at different
time steps. These time steps are either chosen manually by the user or
are proposed by an intelligent analyzer searching the simulation data
for time steps of interest. The latter are points in time in which, e.g.,
a sudden in- or decrease of walking speed is found or time steps in
which paths change their orientation drastically. These more advanced
analytical criteria are thereby related to metrics used, e.g., in [14].
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Figure 1: Simulation tab of the GUI while analyzing a crowd algorithm based on ORCA [15] for a circular-pedestrian-layout.

2 GUI TO EXPLORE CROWD SIMULATIONS

In this section, we will provide an overview of our features for the data
exploration and fine-tuning of crowd simulations, divided into basic
features for the visualization and the global look-and-feel evaluation
(Sec. 2.1) and advanced features for a more sophisticated analysis
(Sec. 2.2). While focusing on the GUI’s main functions, convenience
elements, i.e, status reports will be neglected. Furthermore, we
assume that a connection between our GUI and the crowd simulation
computation framework Menge was already established (cp. Sec. 3).

2.1 Basic Features
Our GUI consists of a configuration tab and a tab for the simulation
and analysis of the simulation results. In the configuration tab users
first select the crowd algorithm to be explored from a set of available
approaches either provided directly by Menge or added as own
implementation to the framework. Second, they specify the envi-
ronmental settings of the scene and the pedestrians behavior. Both
specifications have to be pre-scripted in a layout identical to Menge’s
XML specifications of the scene components (consisting of, e.g., start
positions of the pedestrians, obstacle positions and dimensions) and
the pedestrians behavior over time (as state machines). Thus, users
can either rely on examples provided by Menge or they can easily
specify their own use-case dependent scene and pedestrian settings.

After the configuration, users switch to the simulation tab to start
the data exploration. The tab consists of four logical areas, presented
in Figure 1. Details for areas (A) to (C) will be given in the following,
while area (D) will be explained in Section 2.2. Accompanying the de-
scriptions, user feedback of a small, preliminary qualitative evaluation
with 7 computer scientists (M=27.14, SD=4.53) is directly provided.

Area (A) consists of a 2D orthographic and a 3D perspective
view of the crowd simulation results. The individual pedestrians
are represented by commonly used circles (2D) and cylinders
(3D). Additionally, each pedestrian’s walking direction for the next
simulation step is indicated by means of a short vector. Both views are
linked with respect to the simulation time step, ensuring to represent
the exact same crowd status. In contrast, the presented section of the
results per view can be changed freely and independently of each
other by means of scrolling and zooming techniques via a basic input
device. Thus, users are able to focus on specific regions of interest

in the scene during their data exploration. In addition to this free
navigation, users can select an individual pedestrian to receive more
information. The respective entity is automatically highlighted in
both views and its past and future trajectories, for up to 100 time
steps each, are visualized as shown in Figure 2. Our subjects rated
both views and the provided interactions positively and characterized
area (A) as supportive and meaningful. Their suggestions for
improvement were options to select several pedestrians in parallel
and a more flexible time range for the past and future trajectories.

Area (B) provides an overview of the simulation parameters,
divided into three categories. First, general configuration parameters
are listed, i.e., the number of agents or the number of simulation time
steps. Second, common crowd parameters used in the majority of
crowd simulations are listed, e.g., the pedestrians preferred walking
speed or minimal interpersonal distance between neighboring
pedestrians. When not being used in a user-selected algorithm,
the respective entry is disabled. Third and finally, model-specific
parameters are listed, which are dynamically extracted from the
chosen crowd algorithm. During their data exploration, users are able
to alter these parameters and start a re-computation of the simulation
to explore the parameter’s impact on the results. Our subjects rated
the parameter categorization positively. However, they asked for
options to change the parameter sets not only for the complete
population, but also for certain pedestrian subgroups.

Figure 2: Past and future trajectories of a selected pedestrian for up to
100 time steps each.



Area (C) provides time navigation features to support users in
the exploration of the time-variant crowd simulation results. In the
area’s top, a time slider is provided. A frame counter indicates which
time step of the simulation is currently shown in area (A). Users can
move the frame counter as known from various video and audio tools
to scroll through the simulation or to quickly jump to certain time
regions of interest. However, due to scaling issues this time navigation
technique often does not allow a precise adaption by means of single
time step manipulations. Thus, additional features are provided to
overcome this shortcoming of the time slider. First, users can jump to
a specific time step of the simulation, by entering the respective time
step number in a designated time field beneath the time slider. Second,
designated buttons to advance to the next simulation step or to go back
to the previous time step allow an exact, time-step-based navigation
in time. In addition, rewind and fast-forward buttons are provided
quickly passing through the next 100 time steps in either direction.
This time delta is coupled with the length of the illustrated trajectories
of a selected pedestrian to quickly explore the next or previous path
segments. Furthermore, the simulation can be paused and resumed
by another designated button. Finally, additional information, e.g.,
the number of skipped time frames on rewind or fast-forward, appear
on hover. Our subjects rated the functionality provided by area (C)
positively and characterized the individual elements as easy and
intuitive to use. However, they asked for a reordering of the buttons
to improve the area’s logical coherence. Additionally, they stated
that they would prefer symbols instead of text for the buttons. By
this, the GUI design will become leaner, while symbols for common
functionality from various video and audio tools can be reused.

2.2 Features to Algorithmically Analyze Simulation Data
Besides the previously described basic functions, we developed a set
of more advanced features to algorithmically analyze the simulation
data. In contrast to SteerBench, we thereby do not compute scores or
benchmarks, but present time steps in which potential miss-behaviors
of pedestrians occur. For the miss-behavior detection, we made an
initial selection of three criteria based on various general evaluation
metrics described in the literature (e.g., [9, 13, 14, 16]): stops, speed
and orientation. The first criterion is analyzed automatically on
selecting an individual pedestrian in area (A), while area (D) provides
control elements for the remaining two criteria. If one of the three
criteria is used during the data exploration, its respective result is
visualized on the time slider in area (B), replacing any previous
analysis result (cp. Fig. 3).

Stops One goal of crowd algorithms is to avoid prolonged
standstills or times of minimal movement of pedestrians, defined as
stops, resulting from movement impediments due to scene geometry
or neighboring pedestrian movements. Neglectable exceptions
are stops due to inevitable waiting times while, e.g., a huge crowd
passes through a narrow hallway or due to pedestrians reaching their
final goal. Thus, finding time steps of stops in the simulation data
is valuable in order to evaluate the suitability of the chosen crowd
algorithm in the configured environment. It is worthy to note, that this
criteria is not directly described in the literature. Nevertheless, it is
based on merging the ideas of different individual metrics evaluating
turns, distance and speed of the pedestrians. To evaluate the stops, the

(a) 

(b) 

Figure 3: Two visualizations of relevant time steps (TSs): (a) TSs of
minimal movement (red) and first TS of reaching the goal (blue) for one
selected pedestrian. (b) Speed or orientation criterion evaluated for
each TS, the length of the markers represent the number of pedestrians
matching the criterion.

Figure 4: All pedestrians matching the speed criterion in time step 118,
defined in area (D), are highlighted in both views of area (A).

complete trajectory of a selected pedestrian is analyzed to find signs of
blocking. If the distance traveled between two succeeding time steps
ti and ti+1 is close to zero, ti is marked as relevant time step. To clas-
sify the relevance, the pedestrian’s position in ti is further analyzed. If
it is the pedestrians final goal position, ti is marked as final, otherwise
as stop. The marked time steps are then highlighted on the time slider
as shown in Figure 3(a): for stops red line markers are added, finals
are represented by blue line markers. Thus, the fewer red markers
occur, the better does the respective crowd parameters suite the scene.

Speed Crowd algorithms vary a pedestrian’s speed with respect
to its current as well as future surrounding. However, they aim to
reach and maintain the preferred walking speed, one of the common
crowd parameters. Consequently, it is relevant to find those time steps
in which pedestrians reach a speed within an acceptable range around
the actually preferred walking speed. Thus, the speed criterion is
directly based on distance and speed metrics such as average speed
described in [14]. As a few individuals failing in single time steps may
not harm the overall application, all pedestrians need to be considered.
Thus, the number of pedestrians meeting the speed criterion is
relevant to improve the validity of the speed criterion. To this end,
we count per time step, how many pedestrians travel in a speed within
the acceptable speed range. The size of this speed range can thereby
be specified by the user in area (D), while the preferred walking speed
can be altered in area (B). To visualize the criterion results, markers
are added to the time slider, as shown in Figure 3(b). The length of the
markers are thereby scaled by the count of matching pedestrians per
time step. In conclusion, the more lengthy adhering markers occur,
the better is the crowd simulation suited for the evaluated scene.

Orientation The angular velocity of pedestrians influences the
smoothness of the entity’s trajectory and is thus of interest while
exploring crowd algorithms. This is also described in literature when
considering different turning metrics, e.g., in [14]. In contrast to
the speed criterion, most crowd algorithms only define a maximal
angular velocity, however no preferred one. Thus, our proposed
analysis evaluates whether the difference between the angular speeds
of a pedestrian in two succeeding time step ti and ti+1 is within a
certain threshold. If so, time step ti is marked as relevant and it’s
entity count is increased by one. The respective threshold can be
defined by the user in area (D). The technique to visualize the results
of the orientation criterion is identical to the one used for the speed
criterion. Thus, the more lengthy markers, the better is the crowd
simulation suited for the evaluated scene.

Besides defining the thresholds in area (D), more elements for
the speed and orientation criterion are provided here. Designated
buttons are, e.g., used to recompute the criterion evaluation or to
display the results of the last computation, while text fields summarize
the visualized information. Furthermore, user’s can retrieve more
details per time step: after entering a time step number in area (D)
for one of both criteria, the pedestrians matching the criterion are,
e.g., highlighted in both views of area (A), as shown in Figure 4.

The idea of the analytical support during the data exploration met
with a positive response among our subjects. However, they charac-
terized the current techniques as rather unintuitive and stated that they
were facing a steep learning curve handling them. Thus, the advanced
analysis features need to be improved, as discussed in Section 4.
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Figure 5: Architecture Overview

3 SOFTWARE SETUP

Figure 5 provides an overview of the architecture used to realize
the data exploration of crowd simulations. Although the design was
tested specifically with Menge and our proposed GUI, the setup en-
ables exchanging both components if desired. This is due to our added
Middleware which consists of three logical units. The Messaging
Service unit is used to establish a bi-directional data transfer between
the involved components: the visualization (VIS), the middleware,
and the framework. Once all connections are established, the VIS can
request simulation data for specific, user-configured crowd simula-
tions. The request is retrieved by the middleware and forwarded to the
framework. The results of the framework’s computation core are then
retrieved by the Time Buffer, where the data is stored and forwarded to
the VIS. All requests made for the stored data, i.e., displaying another
time step or analyzing the data, are then answered directly by the
middleware: either new data is directly forwarded by the buffer unit,
or the Analyzer unit computes the requested analysis using the data
of the buffer and sends the results to the VIS. If another set of crowd
parameters is tested or if the requested crowd simulation changes,
the VIS informs the middleware, which requests the new data from
the framework and the previously described data transfers are redone.

4 DISCUSSION

While designing the GUI, we focused on evaluating which features
may support users in gaining insight into time-variant crowd
simulation data. We first considered basic features, i.e., orthographic
and perspective visualizations of the pedestrians and their trajectories
as well as time navigation elements, providing an option for a global
look-and-feel evaluation of a crowd simulation. Furthermore, these
features are widely used in different image, video or audio tools,
allowing a fast familiarization and usage. This was confirmed by
our seven subjects. However, these features require a manual data
exploration. To ensure an exact and worthwhile evaluation of an
algorithm’s suitability in a specific setting, users require knowledge
about the algorithm, the pedestrians’ behavior, and the environment’s
characteristics. For novice users without this prior knowledge, a
manual evaluation is thus tedious and time-consuming as all time
steps have to be inspected closely.

To overcome this shortcoming, we added features which automat-
ically recommend relevant time steps of the simulation for inspection,
resulting in a guided data exploration. Thereby, we initially focused
on three general criteria, related to state-of-the-art metrics used, e.g.,
in benchmark suites, which can be easily determined algorithmically:

the number of standstills a pedestrian has, its speed as well as orien-
tation changes. All three criteria highly impact the overall impression
of a crowd simulation result. If pedestrians, e.g., change their
orientation between time steps drastically, the resulting trajectories
are not smooth and thus, unmotivated movements occur [11]. This
will result in an unnatural behavior, impairing the overall impression.
To this end, getting to know which time steps may contain unnatural
behavior supports the evaluation process. Feedback of our subjects
confirmed our thoughts, however it turned out that our design needs to
be improved. The GUI does not provide any information on the stand-
still criterion, so using it needs further knowledge about the GUI itself.
Subjects also had troubles understanding the threshold entries for
the speed and the orientation criteria. In addition, only one criterion
can be analyzed at a time, ignoring potential interaction effects which
might be of relevance. Another aspect to be revised – which was
interestingly not recognized by the subjects – is the contradiction in
the evaluation of the three criteria: while time steps recommended for
inspection are highlighted for the stops criterion, time-steps without
a detected miss-behavior are highlighted for speed and orientation
criteria. A consistent approach would be more beneficial, preferring
the highlighting of time steps for inspection. Thus, the GUI needs
to be revised and extended. Thereby, aiming for a lean design with
intuitive elements, while embedding basic and advanced features
in logical coherence is important (cp., e.g., Gestalt theory [1]).

Although we consciously started with a small set of analysis
criteria for a crowd algorithm, an extension of this set would be
reasonable. While time steps of standstills are already determined,
deadlocks of pedestrians are not considered yet. These are time
intervals in which pedestrians are sent to and fro between two posi-
tions, potentially forever. As this behavior contributes to an impaired
impression of an algorithm’s naturalness, these situations should be
explicitly presented to the user. Additionally, adding criteria which
focus on the model-specific parameters would further enhance the
guided data exploration. Overall, various examples are provided in
the literature which should be considered in the future work.

In our current design, we chose a time-slider-based result visu-
alization for the evaluation criteria. This technique only provides
time-dependent information, neglecting the space-dependent aspects.
However, these spatial aspects might be of interest as well. Conges-
tion, as mentioned in the last paragraph, e.g., only occur in a specific
area of the tested environment. Thus, supporting users in finding this
location quickly is as least as important as highlighting the time span
of the congestion event. To this end, the design needs to be reconsid-
ered, e.g., using a space-time-cube-based visualization (cp., e.g., [8]).

All features considered above allow analyzing one crowd
algorithm with a specific parameter set and a defined environment at
a time. Comparing two or more algorithms thus requires consecutive
data explorations. This results in switching forth and back between
the algorithms when comparing details. To avoid this tedious
procedure, an option for a side-by-side comparison would be
beneficial. Thereby, the free navigation by means of zooming and
scrolling should be coupled between the respective views of the
algorithms, while 2D and 3D can stay decoupled. When evaluating
different parameter settings for the same crowd algorithm, a merged
visualization may be of value. By showing, e.g., the current trajecto-
ries in contrast to the ones resulting from a different set of parameter
values enables users to see all variations at a glance. Thus, users can
quickly optimize the crowd algorithm for their defined environment.

In summary, the features combined in our preliminary GUI design
turned out to be a valuable starting-point for developing a graphical
tool supporting evaluation and fine-tuning of crowd simulations
for complete environments. While confirming the need to provide
simply usable elements for manual as well as guided data exploration,
new concepts for enhanced functionality emerged as beneficial GUI
extensions.



5 CONCLUSION

Choosing the best-fitting crowd algorithm for a specific environment
is non-trivial, especially for novice users. Elaborated visualizations
with high informative value accompanied by visual analysis methods
would support an informed choice. While benchmarking suites focus
on analyzing certain details of the locomotion behavior to improve
the algorithms itself, our goal is to provide a tool for selecting and
fine-tuning existing algorithms. Thus, we present a preliminary
design of a graphical tool to explore time-variant crowd simulation
data. Our proposed GUI consists of visualization and time navigation
elements as well as features for a guided data analysis. The latter
focus on relevant simulation aspects such as standstills of pedestrians,
their walking speed, and orientation changes. A small preliminary
evaluation indicated, that the proposed ideas are suitable to evaluate
a crowd algorithm in a specific environment. However, future work
should be focused on improving the interfaces for the available
analysis criteria as well as on extending the guided data exploration.
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