
Calibratio: A small, low-cost, fully automated Motion-to-Photon
Measurement Device

Sebastian Pape* Marcel Krüger∗ Jan Müller∗ Torsten W. Kuhlen∗

Figure 1: Left: Our implementation of the device concept. Visible are the tracking body on top, the metal contacts attached to it, the
servo motor it is mounted to, the green led and the microcontroller in its bottom. Right: The device while measuring in our CAVE.

ABSTRACT

Since the beginning of the design and implementation of virtual
environments, these systems have been built to give the users the best
possible experience. One detrimental factor for the user experience
was shown to be a high end-to-end latency, here measured as motion-
to-photon latency, of the system. Thus, a lot of research in the past
was focused on the measurement and minimization of this latency
in virtual environments.

Most existing measurement-techniques require either expensive
measurement hardware like an oscilloscope, mechanical components
like a pendulum or depend on manual evaluation of samples. This
paper proposes a concept of an easy to build, low-cost device consist-
ing of a microcontroller, servo motor and a photo diode to measure
the motion-to-photon latency in virtual reality environments fully
automatically. It is placed or attached to the system, calibrates itself
and is controlled/monitored via a web interface. While the general
concept is applicable to a variety of VR technologies, this paper
focuses on the context of CAVE-like systems.

Index Terms: Computer systems organization—Architectures—
Other architectures—Special purpose systems Computing
methodologies—Computer graphics—Graphics systems and
interfaces—Virtual reality Hardware—Hardware validation—Post-
manufacture validation and debug—Design for debug General and
reference—Cross-computing tools and techniques—Performance—

1 INTRODUCTION

While developing software for virtual environments, the user expe-
rience is one of the central points to keep in mind. In graphically
intensive applications, the performance of the application and the

*e-mail: {pape |krueger | j.mueller |kuhlen}@vr.rwth-aachen.de

resulting latency always needs to be considered. In our research
group the software stack for the development of all virtual reality
software was the ViSTA Virtual Reality Toolkit [1], which supported
CAVEs, HMDs and other systems. Since the Unreal Engine Ver-
sion 4.20 received a plugin for multi display rendering, the idea
of switching to a game engine for faster development cycles came
up. The nDisplay plugin initially did not support the rendering in
a Linux cluster which was added by one member of our group for
test purposes. Shortly after the engine was integrated, some Unreal
demos were programmed to run on the aixCAVE, but were reported
to have a higher response time than the previous ViSTA demos by
some team members. To test this hypothesis we decided to get a
rough estimate of the response time by taking high frame rate videos
with a smartphone. This underlined the initial perceived higher re-
sponse times, so the Unreal Engine was slower than the previous
software stack. Since the initial smartphone measurements needed
multiple people and took much time to evaluate, we needed a fast
and easy process to measure the motion-to-photon latency. Despite
many known techniques from literature (c.f. Section 2), we decided
to build our own device for measuring combating some weaknesses
in the design of the other techniques. This device should be fast and
straightforward to use, fully automated, controllable from a distance,
easy to build and cheap. Besides the obvious points, the operability
from a distance allows the user to work on other parts of the system
without physically controlling the device. This especially allows the
closing of the aixCAVE door while measuring.

2 RELATED WORK

The idea proposed in this paper is not entirely new, but iterates
on previously published designs. A lot of measurement devices
were proposed and built by many teams around the world. DiLuca
summarized some of these methods in [3]. The methods described
in the literature can be assigned to three categories.
– The easiest category of measurement concepts employs a camera to
capture the movement and response. From the recorded footage, the
motion-to-photon latency can be calculated by counting the frames

between the motion and visual change [4].
This always limits the temporal resolution to the frame rate of the
camera. Since high frame rate cameras are often too expensive for a
normal laboratory setup, multiple teams replaced the camera assem-
bly by simpler sensors, like single- or multi-point light sensors.
Miller et al. employed two light sensor arrays and calculated a cen-
troid of brightness [5]. To infer movement from the user and the
output screen at the same time, one sensor was pointed towards the
user and the other one was pointed at the screen. Afterwards the
speed of the user and the virtual counterpart were calculated and
plotted. From these curves the phase offset, which corresponds to
the motion-to-photon latency, was calculated.
In the approach of DiLuca only a single light sensor was used [3].
In his setup the sensor is moved simultaneously over a virtual and a
real black to white gradient. From the recorded brightness data, the
phase offset and thus the motion-to-photon latency can be calculated
as in [5].
Notably, these methods allow the measurement of real user move-
ment instead to synthetic movement done by actuators.

– The second category contains approaches based on a pendulum to
which a tracker is attached. As the pendulum is swung, it performs
a sine movement and a virtual counterpart follows the physical one.
By measuring the offset between the real and the virutal pendulum
the motion-to-photon latency can be inferred. An implementation
of this method introduced by Mine et al. relied on a setup built
from an oscilloscope, a pendulum and a light sensor [6]. The system
measures the delay from the tracker being at the lowest point on the
pendulum swing to a change of brightness on a monitor.
Zhao et al. presented a similar method, but measured not only at the
lowest point, but the complete swings of the pendulum with a rotary
encoder [10].
Steed extended this idea by using a wireless tracker, a pendulum
and a standard video camera [9]. The camera is set up to film the
pendulum and a virtual counterpart on the screen. Afterwards two
sine curves are fitted into the recorded video. The phase offset
between the fitted sine curves gives the motion-to-photon delay.
Unfortunately these methods could produce wrong results, if the
rendering software extrapolates user movement to reduce delays.
This would result in lower delays in predictable movement situations,
but higher delays in abrupt, non-predictable motion scenarios. Some
of these methods also require a complicated calibration setup with
multiple devices to set up.

– In the third category, the tracker is moved and the time between the
movement and the response on the screen is measured. As a trigger
for the response, a light sensing device is used.
Seo et al. employed a rotary base to which a disassembled HMD
is mounted [8]. The base can turn and tilt to simulate all possible
rotations. The team attached multiple light sensors to the display of
the HMD. Using multiple sensors, motion patterns on the display are
measured and a timer is stopped if movement is detected, which was
started on the movement of the rotary platform. The measured time is
the motion-to-photon latency. Papadakis et al. built a system, which
moves a tracker with a motion-platform in a continuous motion [7].
To measure the response, a light sensor is attached to the output
screen of the virtual environment, which changes the color based on
a threshold angle of the tracker. The time from passing this angle
on the motion platform to the light sensor responding reflects the
motion-to-photon latency.
This method is very similar to the method presented in this paper.
However, the method presented here differs in two ways. On the
one hand, our motion platform executes abrupt movements, which
cannot be extrapolated from previous data by the application. This
also changes the trigger mechanism of the color change. On the other
hand the device and hardware architecture in this paper propose a
device that does not need an external Oscilloscope to measure the
delay, which reduces the cost of the whole setup immensely.

ESP32

Switch

Photo

Servo

Servo

− +

5 V

∼

50Ω

3.3 V 3.3 V

10kΩ

Figure 2: The circuit design of Calibratio. The 3.3V and 5V can be
taken from the used development board directly.

Some methods (e.g. the method proposed by Choi et al. [2])
measure a modified version of the real hardware, by exchanging
the original output screen for a normal computer monitor. This
could result in a different motion-to-photon latency as the latency
of the two screens could differ. Other devices like a device used by
Oculus also use a light sensor based latency measurement [8]. This
measurement was meant to work with the Oculus Development Kit
1, which had no translational tracking. Thus, the device connects
to the computer via a USB connection to send a signal to change
the screen’s brightness. This results in a signal-to-photon latency
rather than a motion-to-photon latency, which does not reflect the
performance of the complete system.

3 HARDWARE

The concept of Calibratio, the system proposed in this work, is a
portable, tether-free, fully automated and cheap device.
To achieve this, a microcontroller development board based on the
ESP32 chipset was used. These boards are available for ≤ 5 USD .
While the chipset is available without a development board, it pro-
vides the voltage levels, which are needed for the peripheral elec-
tronics, and adds a USB port for programming and powering the
chipset.
The ESP32 was chosen, since it features Wi-Fi capabilities, allowing
for a tether-free control mechanism. Additionally, it has a dual core
CPU, which can be used for simultaneous measurements and con-
trol. For measuring the fast analog to digital converter (ADC) of the
chipset is used, which can sample up to 200k samples per second.
As light sensor, a ≤ 0.50 USD photoresistor similar to the LDR07
was used. To enable reading the photodiode, a simple voltage-divider
was built and attached to an ADC pin of the micro controller (c.f.
Figure 2).
For mechanical movement of the tracker, a regular RC servo motor
(≤ 3 USD) is used. The tracked device is attached to the servos head.
This could be a complete HMD, a standalone tracker for HMDs or,
like in our case, an opto-electrical tracking body. Unfortunately, the
mechanical actuation introduces a timing offset due to inertia of the
hardware and the signal processing of the servo. Regular RC servos
communicate via a single data line and receive the input angle via
a Pulse Width Modulation (PWM) signal. The data in this signal
is transmitted at about 50Hz, which in the worst case, introduces a
20ms delay between the input and the start of physical actuation of
the tracking device. Since the latter delay can’t be predicted easily,
an external measurement of the start of the physical actuation is

needed. This is done by introducing an electrical switch, built from
two touching contacts, which is opened when the tracking device
begins to move. The electrical contact allows the precise start of the
timer, while the photoresistor is polled to stop the timer.
As a last part, an LED is connected in series with the electrical
switch, such that it lights up, if the switch is closed. Thus, it func-
tions as a pull down resistor and indicates that the switch is closed,
which is used in Section 5.
The whole circuit diagram for this is shown in Figure 2. Here the
3.3V and 5V are used from the microcontroller development board.
As a power supply for the whole system a USB battery pack is used
and connected to the development board via a micro USB cable.

3.1 Specific Hardware Setups
The concept described in Section 3 can be used to measure the delay
in all sorts of systems, that use a screen and some kind of tracking
device, which makes it to a certain degree future-proof for upcoming
generations of VR environments. For different virtual environments
the attachment method of the tracking device to the servo might be
more complex. In our case, the passive tracking body was directly
screwed to the servo. If a heavier device, like an HMD is used, a
stronger servo and a housing with some kind of rotary table, similar
to [8], might be used.
To house all components, a small transparent lunchbox was used,
since it does not interfere with the photoresistor reading, if the
resistor is mounted in its bottom. In some systems, the photoresistor
should be connected to a cable outside the housing to allow the
mounting on other screen types. In our setup the whole box is
simply placed on the CAVE floor and measures the area directly
underneath.
The implementation used, discussed in Section 4, effectively allows
reading of the photoresistor with ∼ 88kHz (every 11.36µs). If this
sample rate should not be accurate enough, the reading via ADC
could be avoided by replacing the 10kΩ resistor with a potentiometer
and using simple digital sampling. The potentiometer can be used to
set a voltage threshold, between the readings of the white image and
the black image.
If the sampling rate used should still be too low, a Sound Card [3] or
a logic analyzer in combination with a faster processing device like
the Raspberry Pi Zero W could be utilized.

4 SOFTWARE

The software on the measurement device fulfills the purpose of
performing the measurements, providing a user interface to control
the measurements and storing the results. For the response of the
application a simple measurement protocol is implemented. Every
application side programming is specifically kept easy, to allow
the integration in every software environment. To ease software
development on the microcontroller side, the Arduino framework1

is used. The device code is available on Git 2.

4.1 Measurement Protocol
Since the microcontroller is equipped with a Wi-Fi module, it could
connect itself to the VR application to perform calibration. We
specifically chose not to connect the two systems to avoid depen-
dencies that might alter the measurement result. Thus, the devices
follow the unidirectional measurement protocol shown in Figure 3.
The application displays a dynamically colored splat, centered below
the tracker, which signals a response to the movement in the form of
black and white color. The protocol uses a third color (red), which is
only used for visualization of the internal calibration and is not used
in the measurement process. In the first step, the application tries to

1https://www.arduino.cc/
2http://devhub.vr.rwth-aachen.de/VR-Group/unreal-

development/calibratio

Application ... Red Red Red Black White Red ...

Display ... Frame Frame Frame Frame ...

Timing Time

Calibratio ... Reset Wait Rnd Move Reset ...

Figure 3: The unidirectional measurement protocol that is followed by
the application and the measurement device.

calibrate the rotation of the tracking body. In this phase the splat is
colored red. This is done by taking the rotation of the tracker over a
few frames and computing the minimum and maximum values for
the measured axis. This dead zone is extended by adding a constant
angle to both extremes, which corresponds to the trigger-threshold
for the application. If the tracker was moving while this calibration
occurred, noticeable by a large dead zone, the calibration is restarted.
Once the calibration completed successfully, the splat is colored
black and the application waits for a motion input of the tracker.
Once this is received, the splat is colored white and the cycle is
repeated.
On the side of the measurement device, the first step resets the track-
ing device into a known state. For this the servo is moved until the
switch is closed. Then a fixed time period is waited and an additional
random time period (Rnd) is added.
The random time period, which is between 1-10ms, prevents a sys-
tematical measurement error that could occur due to an unfavorable
alignment of the whole measurement cycle to a multiple of the frame
timing. This would add a constant offset to the average response
time.
After waiting, a rotation is issued to the servo motor and the timer is
started as soon, as the switch is opened. Here a debouncing of the
electrical contact is strictly necessary, as physical switches tend to
issue multiple signals while opening or closing. To avoid this, on
each (re-) closing of the switch the timer is restarted. The device
now measures the time until the photoresistor passes a predefined
threshold. For this, the application needs to color the splat white and
show it on screen.

4.2 User Interface
To allow the user to easily perform measurements, the device’s Wi-
Fi capabilities are used to open an ad hoc network. The user can
connect to this network with every Wi-Fi device and open the user
interface under the IP address of the device via a web browser. This
displays a web page, which allows the user to configure parameters
and perform measurements or download the results.
The first parameter offered is the threshold that is considered white
for the photoresistor. To determine it, a measurement of the current
value can be made to get the value of black and white to choose the
threshold accordingly. As the second parameter, the amount of servo
deflection in the “move” period can be altered.
To avoid altering the measurements by user actions, the multi-core
functionality of the microcontroller is used to handle user input on
another core than the measuring process.

5 TEST MEASUREMENTS

To evaluate the device, it was placed in our CAVE system and a
demo application was started. An Unreal application was chosen,
which consisted of an empty room with four dancing virtual humans
around the center. These moving virtual humans with high polygon
count should represent an average load, which could occur from a
more complex scene.

To verify the precision of the device, it was tested against a
240fps (≈ 4.16ms temporal resolution) smartphone camera in 5

h
h

runs. For this test, the smartphone recorded the device and the
screen at the same time. The frames from start of the movement,
which shuts off the led, and the floor changing its color are counted.
All measurements resulted in a difference smaller than the timing
resolution of the camera.

To measure the latency of the application, it was run for 10min
prior to the measurements to avoid any loading phases. Then the
measurement was started via the web interface. A total of 3000
measurements was performed over the course of 2h and the results
are shown in form of a histogram in Figure 4.
In this Histogram measurements < 50ms and > 400ms were ex-
cluded as measurement errors, which discarded 25 data-points
(0.83%). The y-axis states the probability of each measurement
to result in the corresponding 1ms wide bin on the x-axis. The aver-
age motion-to-photon latency is ≈ 124.62ms. To describe the data,
three curves were fit, which correspond to a Gaussian Mixture Model
(purple) with two components (red and green). The shown com-
ponents are parameterized with µ1 ≈ 119ms, σ1 ≈ 6.58ms, µ2 ≈
131.9ms, σ2 ≈ 6.47ms. This results in a difference of ≈ 12.9ms
between the centers of the two components.

6 DISCUSSION

The comparison of the measurements to a relatively high-speed
video was done to ensure the results to be reasonable and to ex-
clude deviations that are due to implementation errors of the device.
From the timings extracted from the hand counted measurements
the device seems to measure the same as one would manually do,
but needs to be verified further.

The measured average motion-to-photon latency was higher than
expected. As the many components like Tracking, Tracking Server,
Network, Application and Display-Output are present in our spe-
cific setup, this repeatable measurement allows us to iterate on the
performance of each of the components.

A Gaussian Mixture Model was fit to the results in Figure 4. For
this fit, two components were chosen due to the appearance of the
histogram. We hypothesize that the two peaked appearance reflects
the timing of two frames of our projection system. This hypothesis
is underlined by the time between the two peaks that corresponds
roughly to the period of the frame rate with 90Hz = 11.11ms ≈
12.9ms. This could be explained by the start of the measurement,
which is unsynchronized to the frame rate of the application and
ends in a discretized time step due to the screens refresh rate.
The fitted Gaussian Mixture Model as well as the timing difference
between the peaks will be subject to further research and so far show
just one possible interpretation of the results.

7 CONCLUSION

The device concept presented in this paper shows a low cost device
that is easy to build and use. With the measurement process in mind,
the device was built wireless to make the setup and usage as easy as
possible. This would allow for fast measurements on a regular basis
to quantify changes in hardware and software setups. The concept
can easily be adapted to work with other virtual reality systems than
the tested CAVE setup, making it universal and to a certain degree
future proof. The resulting measurements gave us some inside into
our system and the opportunity to start improving the software stack
to minimize the latency.

7.1 Future Work
In the future, more tests will be conducted to test our hypothetical
interpretation of the Gaussian Mixture Model from Section 6. This
will be done by introducing known delays into the application, which
should allow us to visualize more than 2 peaks, by stretching the
response times predictably.
To verify our measurements externally, we would like to employ
a high-speed camera with a much higher temporal resolution for a

90 100 110 120 130 140 150 160
Milliseconds

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R
el

at
iv

e
P

ro
ba

bi
lit

y

12.909 ms C
1

C
2

C
1
 + C

2

Figure 4: Histogram of the recorded data with an average of ≈
124.62ms and fitted with a Gaussian Mixture Model with k = 2, µ1 ≈
119ms, σ1 ≈ 6.58ms, µ2 ≈ 131.9ms, σ2 ≈ 6.47ms to approximate the
data.

few measurements. Additionally, the accuracy of the device will be
analyzed by another device with a deterministic delay.
While the hardware so far proved to be working, a few modifica-
tions could be done by introducing more costly alternatives to the
actuating servo or the light sensor. We dont expect this to introduce
any changes to the measurement results. To make the metallic con-
tact point more resilient to corrosion or dirt, the screws could be
exchanged with gold-plated contacts or an optical sensor.

REFERENCES

[1] I. Assenmacher and T. W. Kuhlen. The ViSTA Virtual Reality Toolkit.
Proceedings of IEEE VR workshop SEARIS. Reno, NV, pp. 1–4, 2008.

[2] S.-W. Choi, M.-W. Seo, S.-L. Lee, J.-H. Park, E.-Y. Oh, J.-S. Baek, and
S.-J. Kang. Head Position Model-based Latency Measurement System
for Virtual Reality Head Mounted Display. SID Symposium Digest
of Technical Papers, 47(1):1381–1384, may 2016. doi: 10.1002/sdtp.
10930

[3] M. Di Luca. New Method to Measure End-to-End Delay of Virtual
Reality. Presence: Teleoperators and Virtual Environments, 19(6):569–
584, dec 2010. doi: 10.1162/pres a 00023

[4] D. He, L. Fuhu, D. Pape, G. Dawe, and D. Sandin. Video-Based
Measurement of System Latency. International Immersive Projection
Technology Workshop, 2000.

[5] D. Miller and G. Bishop. Latency Meter: A device to measure end-to-
end latency of VE systems. Stereoscopic Displays and Virtual Reality
Systems IX, 4660(919):458–464, 2002. doi: 10.1117/12.468062

[6] M. Mine. Characterization of end-to-end delays in head-mounted
display systems. Technical report, University of North Carolina at
Chapel Hill, Chapel Hill, NC, United States, 1993. doi: 10.5555/
897856

[7] G. Papadakis, K. Mania, and E. Koutroulis. A System to measure,
control and minimize end-to-end head tracking latency in immersive
simulations. In Proceedings of VRCAI 2011: ACM SIGGRAPH Con-
ference on Virtual-Reality Continuum and its Applications to Industry,
pp. 581–584, 2011. doi: 10.1145/2087756.2087869

[8] M.-W. Seo, S.-W. Choi, S.-L. Lee, E.-Y. Oh, J.-S. Baek, and S.-J.
Kang. Photosensor-Based Latency Measurement System for Head-
Mounted Displays. Sensors MDPI, 17(5):1112, may 2017. doi: 10.
3390/s17051112

[9] A. Steed. A simple method for estimating the latency of interactive,
real-time graphics simulations. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology, VRST, pp. 123–129, 2008.
doi: 10.1145/1450579.1450606

[10] J. Zhao, R. S. Allison, M. Vinnikov, and S. Jennings. Estimating the
motion-to-photon latency in head mounted displays. In 2017 IEEE Vir-
tual Reality (VR), pp. 313–314, 2017. doi: 10.1109/VR.2017.7892302

	Introduction
	Related Work
	Hardware
	Specific Hardware Setups

	Software
	Measurement Protocol
	User Interface

	Test Measurements
	Discussion
	Conclusion
	Future Work

