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Abstract. Neuroscientists want to inspect the data their simulations
are producing while these are still running. This will on the one hand
save them time waiting for results and therefore insight. On the other, it
will allow for more efficient use of CPU time if the simulations are being
run on supercomputers. If they had access to the data being generated,
neuroscientists could monitor it and take counter-actions, e.g., param-
eter adjustments, should the simulation deviate too much from in-vivo
observations or get stuck.
As a first step toward this goal, we devise an in situ pipeline tailored to
the neuroscientific use case. It is capable of recording and transferring
simulation data to an analysis/visualization process, while the simulation
is still running. The developed libraries are made publicly available as
open source projects. We provide a proof-of-concept integration, coupling
the neuronal simulator NEST to basic 2D and 3D visualization.
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1 Introduction

In order to understand the complex in-vivo processes inside the human brain,
neuroscientists work on creating realistic in-silico simulations of subsets of it
running on a computer. They create models consisting of individual neurons
and their connections. Furthermore, they set the neurons’ and the connections’
parameters to values that have been determined via prior experiments – either in
vivo or in silico. They also use values that they consider reasonable first guesses
in order to determine ones that lead to realistic behaviour. A simulation is then
run and reveals the behaviour of the neuronal network with the current set of
parameters. Due to the complexity of the neuronal networks, the simulations are
often run in a massively parallel fashion on supercomputers.

Neuroscientists analyse the acquired data once the simulation has termi-
nated. They compare the simulated data to in-vivo data. For this purpose, they
apply statistics and visualizations, for instance, line plots revealing the individ-
ual neurons’ membrane potentials or raster plots presenting the spikes emitted
by the neurons. From observed differences between simulated and the in-vivo
data the neuroscientists devise updates to the model and the set of parameters.
The updated neuronal model is then again simulated, analysed and re-assessed.

This iterative process of simulation and subsequent analysis (e.g., [20]) re-
quires the neuroscientists to wait for the simulation to be finished before the
model and its parametes can be adjusted. Interactive simulations are still very
primitive, non standardized, and ad-hoc: means of looking into a running sim-
ulation exist (e.g., [16]), but they are limited. Neuroscientists can hardly take
counter-actions to simulations that deviate too much from real-life behaviour
or that show erratic behaviour beyond recovery. If this happens early during a
simulation, scarce CPU time is wasted, without yielding new insight. On the con-
trary, that time cannot be used for other experiments waiting in the job queue –
submitted by other scientists or for simulations using updated parameters.

If the neuroscientists were able to visualize their measurements during a
live simulation, they could adjust parameters on the fly. That way, the param-
eters could be adjusted more frequently, using the allotted compute time more
efficiently, providing insight earlier. To date, the only way mimicking such an
interactive simulation requires to run it for very short intervals, halt it, anal-
yse/visualize the data, adjust the model and its parameters, and eventually
resume the simulation. This is tedious since the neuroscientists have frequently
to restart even well-behaving simulations without applying any changes. More
importantly, resuming a simulation introduces an overhead due to additional
initialization time spent inside the simulator. This overhead will add up, so that
currently the neuroscientists trade interactivity for better CPU time usage.

To overcome this, we devise a framework for streaming simulation data from
a simulator to a separate analysis/visualization process. The framework is sep-
arated into two lightweight parts. The one converts the simulation data into a
simulator-agnostic transfer format and provides the analysis/visualization pro-
cess with means to access that data. The other provides a thin layer for transport-
ing data packets in the transfer format. This separation facilitates adaptation of
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the framework to other simulators. Furthermore, we expect that the transport
layer will be useful to in situ applications in fields other than neuroscience.

In the remainder of this paper Section 2 gives an overview of the related work.
Section 3 presents the in situ framework we propose, Section 4 outlines our proof-
of-concept integration of simulation and visualization, Section 5 evaluates the
performance of the proposed framework. Section 6 concludes the paper and gives
an outlook on future work.

2 Related Work

Simulating a neuronal network in the computer resembles an electrophysiologi-
cal experiment. The neuroscientist builds a neuronal system by creating one or
more model neurons and connecting them via synapses to form a network. After
running the simulation, they analyse the measured data.

The NEST simulator [8] is able to work with large, heterogeneous networks
of spiking neurons – either point neurons or neurons with a small number of
compartments. NEST can represent spikes in continuous time [14]. It allows for
simulating different types of model neurons and synapse models in one network.
Arbor [5] is a new multi-compartment neuronal network simulator currently
under active development. It is specifically designed for many-core architectures
and provides optimized backends for CUDA, KNL, and AVX2. Arbor features
asynchronous spike exchange that overlaps compute and communication, and
therefore hides latencies. It will enable new scales and classes of morphologically
detailed neuronal network simulations on current and future supercomputing
architectures. NEURON [9,12] is capable of simulating individual neurons and
networks of neurons. The related models are closely linked to experimental data.
NEURON supports the neuroscientist in gaining insight without requiring in-
depth expertise in numerical methods or programming by providing convenient
tools for constructing, exercising, and managing neuron models.

Neuroscientists will look at the simulation results using statistical analysis
tools as well as visualizations. They use either file I/O to write the simulation
data to disk and read it back, or they use more elaborate transport mechanisms.
MUSIC [7] is a standard API for exchanging data between simulators. It provides
mechanisms to synchronize the simulations and map their data models to each
other. NEST and NEURON provide interfaces to MUSIC. However, MUSIC pri-
marily facilitates inter-operability between neuronal simulators within a parallel
computer during runtime. This paper therefore provides a lightweight alterna-
tive specifically tailored to coupling simulations and visualizations. Nett7 [17]
provides a similar approach in this regard, building on top of ZeroMQ8. Fur-
thermore, it can be used to steer simulations [16]. ZeroEQ9 follows a similar
approach.

7 https://devhub.vr.rwth-aachen.de/VR-Group/nett
8 http://zeromq.org
9 https://github.com/HBPVis/ZeroEQ

https://devhub.vr.rwth-aachen.de/VR-Group/nett
http://zeromq.org
https://github.com/HBPVis/ZeroEQ
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The scientific visualization (SciVis) community is facing similar in situ visu-
alization challenges as the neuroscience community, albeit on significantly larger
scales: while large-scale neuronal network simulations today typically operate
on several tens of thousands to a few million neurons with only few recorded
attributes, for SciVis the simulation data of a single timestep nowadays eas-
ily exceeds hundreds of gigabytes. In order to deal with these amounts of data
efficiently, several in situ frameworks have emerged. ParaView Catalyst [2] pro-
vides data processing and visualization for in situ analysis and visualization.
It works seamlessly with the visualization toolkit VTK [19] and ParaView [1].
LibSim [22] takes a similar approach and facilitates in situ computations within
simulation codes. It interfaces VisIt [4] for data analysis and visualization, also
building upon VTK. Catalyst and LibSim are pipelines specifically tailored to
their visualization applications ParaView and VisIt, respectively. More general
pipelines have emerged recently. SENSEI [3] provides a generic in situ interface
promoting code portability and reusability, building upon an extended VTK
data model. ALPINE [11] is targeting modern supercomputer architectures. It
supports Catalyst and LibSim but also provides ALPINE Ascent as its own
runtime. Conduit10 provides a model describing hierarchical scientific data. It
provides access to simulation mesh data structures and basic communication
functionality. Among others, ALPINE Ascent and VisIt are using Conduit.

All of the above in situ frameworks focus more on the “established” HPC sim-
ulations, like computational fluid dynamics or climate simulations, than on the
ones used in the field of neuroscience. Therefore, we devise a custom pipeline,
developed along use cases emerging from the Human Brain Project [13]. We
use Conduit for data description, due to the convenience it provides. We add a
lightweight transport layer in order to connect simulation and analysis/visualization.
By using Conduit, we expect the pipeline to be compatible to at least some of the
existing, mature in situ frameworks, most notably ALPINE. We can therefore
later adopt one of them if need be.

3 Method

The devised framework for streaming simulation data from a live simulation to
a separate analysis/visualization process consists of two parts. The one (Subsec-
tion 3.1) plugs into the neuronal simulation, takes the recorded data and con-
verts it into a simulator-agnostic transfer format; on the analysis/visualization
side this part provides access to the stored data. The other part (Subsection 3.2)
handles data transport.

3.1 NESCI – Neuronal Simulator Conduit Interface

Neuronal simulators provide means to record the simulated data. NEST [8], for
instance, provides among others multimeters and spike detectors as instruments

10 https://software.llnl.gov/conduit/

https://software.llnl.gov/conduit/


Streaming Live Neuronal Simulation Data Into Visualization and Analysis 5

Simulation
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Fig. 1. Hierarchical data layout used for transfer: Each recording device defines a
subtree containing data for the stored timesteps. Multimeters (MM A, MM B) store
measurements (black circles) of an attribute (Vm, Vθ, . . .) for every neuron (n0, n1, . . .).
Spike detectors (SD C) store a list of neurons that fired in the respective timestep.

that the neuroscientist can connect to either individual neurons or populations of
them [21]. Arbor [5] provides similar methods. These instruments are optimized
to efficiently work with the respective simulator. Consequently, the interfaces
of their associated classes and methods to be called during simulation differ. In
order to facilitate connecting any simulator to analysis/visualization, we propose
a simulator-agnostic transfer data format.

In this transfer format, data is arranged hierarchically in a tree, since this
layout emerges naturally from the concept of data recording in neuronal simula-
tion. Figure 1 presents an overview. The simulation acts as the root node of the
data. Each recording device then establishes a subtree immediately underneath
the root node. Since all the currently considered recording devices record data
that is related to the simulation time, each recording device comprises again
several subtrees – one per recorded timestep.

Multimeters record time series data of certain attributes for individual neu-
rons. Those attributes are, for instance, the membrane potential (Vm) or the
voltage threshold (Vθ) for firing. Each attribute constitutes a separate subtree
underneath the respective time step. For a multimeter, data of each attribute is
recorded in every timestep. The data is stored per neuron in the tree’s leaves.

Spike detectors record neurons’ firing events, i.e., spikes. Typically, these
data are sparse: spikes occur only in few timesteps and only few neurons fire in
a timestep. Consequently, only those timesteps that contain spikes are stored in
the tree. The firing neurons’ ids are immediately stored as a list in the leaves of
underneath the timestep.

We use Conduit for data handling. Conduit provides intuitive means to write
and retrieve hierarchical data. The hierarchical layout of a block of raw memory
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can be described to Conduit via JSON. An individual datum is addressed via its
path. A valid path consists of the names of the tree’s nodes, concatenated along
the path from the root node to the respective datum. Furthermore, Conduit
provides convenient means to serialize/deserialize the stored data for transport.
Finally, Conduit efficiently facilitates updating existing data. The update is en-
coded as another Conduit tree and fed into the existing one. If a path exists,
data are updated. If a path does not yet exists, the respective memory is al-
located and data from the update is incorporated into the existing tree. This
updating mechanism facilitates implementation of thread safe recording device
adapters: each holds its own Conduit tree to record the data, consequently not
requiring synchronization. Data is then transported off each device individually,
again not requiring synchronization except for the transport layer. The analy-
sis/visualization side in turn holds its own Conduit tree to collect the data to
be visualized. It receives the individual trees and gathers them into its tree via
Conduit’s update mechanism.

On the simulation side, we provide base classes to facilitate implementation
of simulator-specific adapters. These then tap into the recording methods of the
simulator and feed the data into the hierarchical storage for transfer. On the
analysis/visualization side, we provide base classes to facilitate implementation
of reader classes that provide access to the stored data. Since each recording
device in each simulator may provide different recordings, those reader classes
again have to be simulator-specific.

We have implemented the described data layer, converting simulation data to
and from the transfer format, as the C++ library nesci (pronounce "nEsi) – Neu-
ronal Simulator Conduit Interface. Nesci currently contains recording devices
for NEST and a prototypic multimeter for Arbor. We provide Python bindings
for the analysis/visualization side of nesci for convenient integration into exist-
ing scripts. Nesci is publicly released11 under the terms and conditions of the
Apache v2.0 license.

3.2 CONTRA – Conduit Transport

The data generated by the simulator and recorded via nesci has to be trans-
ported to the analysis/visualization side. Since nesci encoded the data using
Conduit into a simulator-agnostic transfer format, we provide a general purpose
transport layer for Conduit trees. We expect this transport layer to be therefore
also useful for domains other than neuroscience.

The transport layer provides an abstraction from the specific transport tech-
nology, e.g., shared memory or network connections. Inspired by Conduit, we
offer a relay that acts as the interface to the data producers and consumers,
respectively. The former sends Conduit trees via the relay interface. The latter
is provided by the relay with a list of Conduit trees that can then be aggregated
into a single data set via Conduit’s update mechanism (cf. Subsection 3.1).

11 https://devhub.vr.rwth-aachen.de/VR-Group/nesci

https://devhub.vr.rwth-aachen.de/VR-Group/nesci
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A relay constructs an instance of an accessor to the selected transport tech-
nology. On sending, the Conduit tree is serialized into a data packet comprising
the tree’s data as raw bytes and its schema as a JSON string. The packet is then
handed over to the selected transport technology via the accessor. On receiv-
ing, the arrived packets are deserialized into individual Conduit trees, one per
packet. That way, the consuming application can implement application-specific
data aggregation using Conduit’s update mechanism.

We provide a relay implementation that can use a variety of transport tech-
nologies. For each technology an accessor needs to be implemented. This accessor
has to be able to handle the specified data packets by providing suitable send
and receive methods. Consequently, environment specific transport technologies
can be added in a straightforward way.

We have implemented the described transport layer as the C++ library
contra – CONduit TRAnsport. Contra currently executes data transport via
shared memory provided by boost::interprocess12. That way, contra can
be used for coupling simulations to analysis/visualization processes both run-
ning on a neuroscientist’s local workstation. A ZeroMQ-based and a GPRC-
based transport will be added in the near future enabling simulation and anal-
ysis/visualization to be run on separate machines. MPI-based transport will be
added afterwards, possibly relying on Conduit’s existing MPI support. We pro-
vide Python bindings for the transport interfaces for convenient integration into
existing scripts. Contra is publicly released13 under the terms and conditions of
the Apache v2.0 license. The LGPL will apply for ZeroMQ-based transport.

4 Application

As a proof-of-concept application we couple a small NEST simulation to both
a 2D and a 3D visualization. Both simulation and visualization are supposed to
run on a single machine, so that neuroscientists can immediately inspect a run-
ning simulation at their desk. This, however, deliberately limits the simulatable
network size. Nevertheless, simulations of larger networks to be run on a super-
computer are left for future work. Simulation and visualization are supposed to
run in different processes, having simulation and analysis loosely coupled. This
split is furthermore expected to simplify later deployment to other platforms
using different means of transportation.

4.1 NEST Simulation

The simulated network consists of two layers of neurons containing 4n excitatory
and n inhibitory neurons, respectively. The neurons are simulated using a leaky
integrate-and-fire model with exponential shaped postsynaptic currents [6,10,18].
With a 10 % probability each neuron creates intra- and inter-layer connections to

12 https://www.boost.org
13 https://devhub.vr.rwth-aachen.de/VR-Group/contra

https://www.boost.org
https://devhub.vr.rwth-aachen.de/VR-Group/contra
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excitatory

10 %

inhibitory

10 %

10 %

10 %

Poisson generator

multimeter
Vm, Vθ

inhibitory

excitatory

Fig. 2. Neural network used for the proof-of-concept application. A layer of 4n ex-
citatory neurons and a layer of n inhibitory neurons are connected with both intra-
and inter-layer connections. The excitatory neurons are fed a noise signal. They are
connected to a multimeter for visualization.

other neurons. A Poisson generator is connected to each excitatory neuron, feed-
ing them a noise signal, serving as input to the neuronal network. The structure
of the network is visualized in Figure 2. A multimeter is connected to the excita-
tory neurons, recording their membrane potentials Vm and their firing threshold
Vθ.

NEST nesci Conduit

FindDeviceFor(data)

device

device.Record(data)

ConstructDataPath()

path

node[path] = data

Fig. 3. Data flow for writing data from the NEST simulation to the Conduit node of
a nesci device (e.g., a multimeter or spike detector).

In each timestep, NEST issues a call to its recording backend for each record-
ing device and each connected neuron. The measurements for all the neuron’s
recorded attributes are passed into this call. This data is passed to nesci using
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NEST nesci contra Conduit

device.GetNode()

node

relay.Send(node)

node.serialize()

packet

transport.Send(packet)

LoopLoop for each device

Fig. 4. Data flow for sending data stored in the Conduit nodes of each nesci device
via contra.

a convenient interface where it is then stored at the corresponding path in a
conduit tree (Figure 3). After some timesteps being recorded – here 10 – the
recorded data is sent via contra’s transport layer to the analysis/visualization
side (Figure 4).

4.2 2D Visualization

The 2D visualization is implemented in Python. It has a Conduit tree to aggre-
gate all the data to be visualized. The visualization is run as a separate process
and continuously polls contra for new Conduit trees (cf. top of the outer loop
in Figure 5). Once new data has been received, each of the new subtrees is used
as an update to the visualization’s main Conduit tree as described in Subsec-
tion 3.1 (cf. inner loop in Figure 5). After having received new data, the 2D
plot of the simulated neurons’ membrane potentials is updated. For this pur-
pose a list of available timesteps is queried from the multimeter. Afterwards, the
neuron ids for which the requested attribute (here the membrane potential) has
been recorded during the timesteps is determined. Then, the time-series data is
queried for each neuron and passed to Matplotlib for plotting (cf. bottom of the
outer loop in Figure 5).

Figure 6, left, shows the resulting plot after having simulated 1000 ms of
biological time, using n = 9, i.e., 36 excitatory neurons. The plot is continuously
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Application Conduit nesci contra

new Node()

node

new Multimeter(’name’, node)

multimeter

relay.Receive()

transport.Receive()

packets

nodes

node.update(n)

LoopLoop foreach (n in nodes)

multimeter.GetTimesteps()

timesteps

multimeter.GetNeuronIds()

neuron ids

multimeter.GetTimeSeriesData()

data

Plot(timesteps, neuron ids, data)

LoopLoop while application is running

Fig. 5. Structure of the visualization applications. A single nesci multimeter device is
created and used to query the data from the main conduit node for the visualization.
The relay polls for nodes containing new data via the transport layer (the shared
memory) and adds each subtree to the main conduit tree.
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Fig. 6. Visualization of live simulation data generated for the example application
using n = 9, i.e., 36 excitatory neurons. Left: time-series membrane-potential plot.
Right: colour-coded membrane potential mapped to spatially arranged neurons; one
neuron is selected with the tooltip showing its membrane potential.

updated during the simulation. The value of n is set only in the simulation
script and not hard-coded anywhere in the nesci-contra pipeline. Instead, the
visualization script automatically determines the number of neurons in the data
set in order to plot the correct number of lines – one per neuron.

4.3 3D Visualization

Physically, the neurons in this example are arranged on regular grids. The sim-
ulation requires only the connections between the neurons which are modelled
probabilistically. The neuroscientists, however, need to see the simulated data
arranged in their physically correct way in order to interpret them fully.

For this purpose, we have created a prototypic 3D visualization with the
colour-coded membrane potential mapped onto spatially arranged neurons. We
have implemented this application in C++ using VTK [19]. Instead of presenting
time-series data, this application presents all the membrane potentials for a given
time step. The neuroscientists can then navigate the time steps to look at the
respective simulation data for all neurons simultaneously in order to evaluate the
network’s spatial behaviour. Figure 6, right, shows the resulting visualization.

Polling the data from contra is done the same way as the previous python im-
plementation (c.f. Figure 5). The retrieved data is then passed to a vtkPolyData

in order to be rendered.

5 Performance Evaluation

An important question is how much overhead this adds to the simulation when
using our proposed pipeline as the benefits of in situ visualization vanish if it
slows down the simulation too much. The neuronal network described in the
previous section was simulated on a machine equipped with two Intel R© Xeon R©

CPU E5-2695 v3 @ 2.3 GHz for n = 9, n = 25, and n = 81. We connected a
simple python client similar to Figure 5 to poll – and thus clear – the shared
memory to avoid running to create a realistic scenario. However, the display
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of the plots was removed from the application to reduce the impact on the
simulation as both run on the same machine. We do not focus on the performance
of the visualization but rather the overhead added to the simulation by adding
our custom recording backend to the NEST simulator.

Baseline ASCII NESCI & CONTRA

n = 9 21.5 ms 98.2 ms (457 %) 543.7 ms (2528 %)

n = 25 62.2 ms 281.1 ms (452 %) 1559.0 ms (2506 %)

n = 81 206.7 ms 940.5 ms (455 %) 5293.2 ms (2560 %)

Table 1. The total time to run the simulation without any recording backend attached,
with the ASCII recording backend attached and with our streaming recording backend
attached. The percentages in brackets denote the relative duration of the simulation
with the corresponding recording backend attached compared to the baseline.

First, we ran the simulation without any recording backend attached to get
a baseline of how long the simulation takes on this specific machine. Second,
we ran the same simulation attached with the ASCII recording backend that
is provided alongside the NEST simulator. It is used to compare the overhead
of our streaming backend to other recording backends. Last, we ran the same
simulation attached with our custom streaming recording backend that uses
nesci and contra. Table 1 shows the total simulation time for the three presented
scenarios. For each scenario the network was simulated for 1000 ms of biological
time. The simulation time denotes how long it took the simulation to finish.
Each test was repeated 5 times only counting the minimum result.

Currently, our custom recording backend adds to much overhead to the simu-
lation for practical usage in real world applications. However, it should be noted
that the current implementation is only a proof-of-concept and not a finished
product because at this point in time no effort has been put into optimizing
the performance of the pipeline. To determine where the performance can be
improved the simulation was profiled using the Valgrind instrumentation frame-
work [15].

Profiling revealed two major bottlenecks in the recording backend: writing
new data into the Conduit tree as described in Figure 3 and writing the data
into the shared memory as described in Figure 4. These two functions contribute
to over 90 % of the total simulation time (46 % and 45 % respectively). In the
remaining part of this section, we focus on a more detailed analysis of these two
functions and suggests possible optimizations.

The main operations that contribute to the bad performance of writing data
to the Conduit tree (c.f. Figure 3) are constructing the path to the data (16 % of
the total simulation time) and inserting the data into the Conduit tree (22 % of
the total simulation time). Constructing the path currently involves numerous
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costly std::stringstream operations to convert floating point values to strings.
The 2017 standard of C++ provides the alternative function std::to chars

which is optimized for performance instead of flexibility and usability. The sec-
ond operation – inserting the data into the tree – involves numerous costly string
operations to extract the path and dynamic allocations for the newly added
nodes. Conduit supports preallocating a block of memory that can be used to
store the data directly. On the one hand, this would drastically reduce the num-
ber of allocations when adding new nodes to the tree. On the other hand, the
data cen be now written directly to the raw memory by calculating the offset.
This saves the costly string operations introduced by parsing the path to the
data.

The second major bottleneck is writing the conduit tree to the shared memory
(c.f. Figure 4). Like in the previous scenario, two operations take the majority
of the time: serializing the Conduit tree (22 % of the total simulation time) and
actually writing the data to the shared memory (20 % of the total simulation
time). The serialization of the tree is done by Conduit itself so there is no direct
way to optimize this step. However, preallocating blocks of memory as discussed
before should also accelerate the serialization process as Conduit is able to just
copy the block instead of traversing every single node of the tree. In the second
limiting operation – writing to the shared memory – almost the whole time is
spent acquiring the mutex that synchronizes the writing and the reading process.
This could be done in a separate thread so it does not block the simulation.

6 Conclusion and Future Work

We have proposed a lightweight streaming framework for connecting neuronal
simulators to analysis/visualization. We have demonstrated its applicability by
a proof-of-concept application coupling a simple NEST simulation to 2D and
3D visualizations. Both present the data while it is being simulated without
having to continuously pause and resume the simulation. The current state of
the pipeline adds too much overhead, but we provided a lot of suggestions to
improve its performance in future work.

The two developed libraries (nesci and contra) work hand in hand, provid-
ing concise APIs for integration into neuroscientific workflows. We have demon-
strated this property by outlining a typical data flow. Both libraries are publicly
available under the terms and conditions of the Apache v2.0 license. While nesci
is specifically developed for neuroscientific applications, we expect contra to be
useful in other domains that are using Conduit for describing their data.

We plan to add ZeroMQ-, GRPC-, and MPI-based transport mechanisms to
contra in the near future. That way, the proposed pipeline will become applica-
ble to large-scale neuronal simulations. Furthermore, we plan to extend nesci’s
Arbor support. We currently have only a rudimentary implementation available.
Working in close collaboration with the Arbor developers will help streamline
this implementation and greatly improve performance. In the long run, we will
add support for other widely used neuronal simulators.
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