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Abstract—The black box problem of artificial neural networks
(ANNs) is still a very relevant issue. When communicating basic
concepts of ANNs, they are often depicted as node-link diagrams.
Despite this being a straight forward way to visualize them,
it is rarely used outside an educational context. However, we
hypothesize that large-scale node-link diagrams of full ANNs
could be useful even to machine learning experts. Hence, we
present a visualization tool that depicts convolutional ANNs as
node-link diagrams using immersive virtual reality. We applied
our tool to a use-case in the field of machine learning research
and adapted it to the specific challenges. Finally, we performed
an expert review to evaluate the usefulness of our visualization.
We found that our node-link visualization of ANNs was perceived
as helpful in this professional context.

Index Terms—Artificial Neural Networks, Immersive Analyt-
ics, Node-Link Diagram

I. INTRODUCTION

During the past decade, ANNs have become a standard
tool within the larger topic of artificial intelligence (AI). They
form an integral part of many state-of-the-art machine learning
approaches in the areas of, e.g., image classification, object de-
tection or semantic image segmentation. As these approaches
rapidly advance, our understanding of their means to achieve
their outstanding results stagnates; a circumstance, commonly
called the black box problem [3]. However, the behavior and
especially flaws of ANNs have to be properly explained for
them to be acceptable in safety-critical applications. As a
result, the field of explainable artificial intelligence (XAI) has
recently gained traction [2], [4], with many possible directions
to address the black box problem. We refer the reader to the
survey on methods for explaining black box models presented
in [5] for an extensive overview.

A common way to depict neural networks are node-link
diagrams [7]. In a node-link diagram, the core concepts
of neurons and synapses are clearly depicted as nodes and
edges. This makes the representation close to the physical
appearance of ANNs biological counterparts. Despite this,
advanced visualizations for complex ANNs rarely make use of
node-link diagrams. Instead, they are mainly used in literature
to illustrate concepts on small scale examples, like, e.g., Figure
11 in [11] or many Figures in [12]. There are also interactive
visualizations making use of node-link diagrams, such as the
tensorflow playground [14]. Their interactive website allows
users to set the hyperparameters of a small neural network
and observe their behavior on a few two dimensional toy

Fig. 1. An overview of our visualization without anything selected. The layers
of the ANN are represented by circles that are stacked on top of each other.

datasets. While it is a powerful tool to teach the basics of
ANNs to beginners, the networks depicted are just as small
and exemplary. To the best of our knowledge, it has not been
attempted before to depict a large ANN, that is subject to
active research, as a node-link diagram in this way.

Another way node-link diagrams are used to depict ANNs
is in computation graphs, as described, e.g., in [8]. In a
computation graph, the nodes do not depict individual neurons
but computations and the edges depict data flowing between
these computations. The data, in this case, is usually high-
dimensional tensors which correspond to activation values,
weights, biases, gradients, etc. For this reason, these node-
link diagrams do not represent the networks themselves, but
the computations involved. Although this kind of node-link
diagram has been popularized for large, productively used
ANNs by the TensorBoard visualization [15], it does not
convey the scale of the network and its topology very well.

One may not forget to mention that there is one notable
related work that comes very close to our vision. The web-
based visualization described in [6] depicts a convolutional
ANN trained on the MNIST dataset of hand written digits as
a three-dimensional node-link diagram. Users are able to feed
their own digits into the network and immediately observe
the responses of any neuron as their color is mapped to



their activation value. The weights of all synapses are also
depicted using colored lines and the learned filter kernels can
be displayed. While their approach depicts a working, full-
scale ANN, the authors state that it is targeted at an educational
use case. In this work, we aim to take their idea one step
further and evaluate if a similar depiction of ANNs can also
be useful to machine learning experts.

One major challenge, and probably the reason why large
scale node-link visualizations have not been attempted more
often, is the increasing size and complexity of ANNs. Modern
ANNs contain thousands of neurons and millions of synapses.
Naively drawing a network of that size on a two-dimensional
plane would result in a lot of visual clutter and be far from
interpretable. A three-dimensional visualization as described
in [6] alleviates the problem but still suffers the same issues
if displayed on a two-dimensional screen. This is why, for
our visualization, we decided to make use of immersive
virtual reality (VR) technology. Due to recent economical
advancements, VR hardware has become much cheaper and is
now feasible for use in everyday work [1]. This is handy for
our task, since the ability to directly display our visualization
in three-dimensions lets us make better use of all three spatial
dimensions. In addition to that, there have been strong hints
that higher degrees of immersion lead to better performance
in some data analysis tasks [9], [13].

To show that our system can be useful to machine learning
experts, using example datasets like MNIST is not enough.
Instead, we need to apply our system to a use case that is sub-
ject to active research. In the field of production technologies,
machine learning is currently an area of increasing interest.
Therefore, we decided to apply our visualization to a use case
in that area. The following section describes this use case in
more detail.

II. USE CASE

We demonstrate our visualization approach on a convolu-
tional ANN that controls a robot arm. This section will give a
short overview of the project. A more detailed description is
presented in [10].

In essence, the project demonstrates how the movements
of a robotic arm can be generated via reinforcement learning.
For this, the robot is given the task of playing the classic wire
loop game, where a fork, carried by the robot, has to be moved
along a path defined by a bendable wire without touching it.
Touching the wire results in an electrical circuit being closed,
signaling that the robot has made a mistake. Based on this
information and the images of a camera that is mounted to
the robot’s head, a reinforcement learning approach trains a
convolutional ANN. This ANN uses (downsampled) camera
images as inputs and generates robot trajectories as outputs.
To put it simply, the process works as follows: First, an image
is taken of the next part of the wire. Then, the ANN calculates
a trajectory based on this image. Finally, the robot moves along
the trajectory and the process repeats. If the robot touches the
wire, it has to reset its position and receives a negative reward
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Fig. 2. A schematic depiction of our visualization.

during the training process. The details of this training process
are not relevant to this work and are thus omitted.

The project has already demonstrated that it is possible to
learn a control-policy for a robotic arm to play the wire loop
game, solely based on camera images. Nevertheless, there are
still many ways to improve this process that are actively being
worked on. This makes this project an ideal use case for our
visualization, since the experts working on it can likely benefit
from a better understanding of their ANNs. Additionally,
the system uses images as inputs and a convolutional ANN,
similar to [6] which inspired this work. However, there are a
few major differences. The network controlling the robot is
a lot larger and more complicated. Furthermore, it uses color
images as inputs and it outputs continuous values that encode
a trajectory. Finally, it is not updated based on user input but
every step the robot takes, which is about once every second.
These aspects pose additional challenges, which had to be
addressed to make the visualization applicable to this use case.
The way we designed it around these aspects is described in
the next section.

III. CONCEPT

An overview of our visualization can be seen in Figure
1. As described earlier, it is greatly inspired by the system
described in [6]. Just like them, we visualize the ANN as
a node-link diagram where the nodes represent individual
activations and the edges represent the weights between them.
Likewise, we show only those edges connecting to the node
that is selected, to avoid visual clutter (see Figure 3). However,
due to the larger networks from our use case, using a linear
layout and showing the visualization on a 2D screen, as it
is done in [6], is not feasible. This is why we decided to
use immersive VR, since it allows us to make better use
of the third dimension. The decisions made regarding our
VR implementation are described in Section III-A. Section
III-B explains the spatial layout of our visualization, especially
regarding the additional freedom gained from VR. Finally,
Section III-C describes additional aspects that needed to be
addressed in our application to adapt it to our use case.



A. Immersive Virtual Reality

Our goal was to design an application that machine learning
expert could integrate into their workflow. The first decision,
when designing an immersive VR application for use in
everyday work, should be the usage scenario [1]. ANNs are
abstract objects that do not exist in the physical world, so
the user’s sense of their own body will likely not effect their
immersion. Hence, a seated scenario would be feasible for
this application. However, the experts in our use case usually
work standing in front of the robot and walk around frequently.
The location of the robot inside their workshop even allows
for a tracking space that is large enough to walk around in.
Therefore, we decided to design our application to be used
while standing and allow the users to walk around if they wish.
Additionally, we included a virtual travel technique (flying) to
give the users more freedom to position themselves.

Naturally, since we wanted the availability of our visu-
alization as high as possible, we decided to use consumer
grade head mounted displays (HMDs) as our target display
devices. These devices are cheap, easy to use and don’t
require a complicated setup. To enable virtual travel and all
other interactive elements of the visualization, we can use
the standard spatial input devices that are included with the
HMD. Our application is built on the OpenVR framework,
so a variety of consumer HMDs can be easily supported. We
designed our application mainly around Oculus Rift and HTC
Vive HMDs and respective controllers. Using different kinds
of controllers is possible but might require a redesign of the
control scheme, since the button layout on VR controllers is
not yet standardized.

B. Spatial Layout

The baseline approach for the spatial layout of the nodes
in our visualization is the linear approach used in [6]. In
this case, the third spatial dimension is only used to group
activations of the same convolutional neuron, while all neurons
are placed along a straight line. This layout works well for
smaller networks and is especially useful when the target
platform supports only 2D display and interaction. Another
positive aspect of this layout is the way users can zoom in
to easily view any part of the network in isolation. For our
networks, however, this layout results in a very long line,
where most of the information is distributed along one spatial
dimension. This is why, we needed to find a layout that is
more compact but doesn’t introduce too much visual clutter.

We wanted to preserve the idea of encoding the layer
structure of the networks along one spatial dimension. This
leaves us with two spatial dimensions to layout the neurons.
The neurons in the hidden layers of an ANN do not have
any ordering or structure that would be implied from the
calculations. Hence, there is a lot of freedom for their place-
ment. We considered placing them on a regular grid, since
this would result in a very compact layout. Unfortunately,
this caused many of them to be occluded. In the end, we
settled on arranging the neurons in circles. This makes the
visualization compact enough to easily fit the users’ field of

Fig. 3. Pointing at any activation shows all edges that connect to it. For
convolutional layers, the filter kernels are shown as well.

view. Still, it preserves the good properties of the linear layout,
as users can look at parts of the network from within the
circle to view them in isolation without clutter. To decrease
the amount of movement the users have to do and give
them the ability to compare neurons of adjacent layers, the
neurons can also be rotated along the circle. Additionally, the
fact that there is no inherent ordering between the neurons
is visually communicated better than in the linear layout.
Overall, we see this layout, shown schematically in Figure
2, as a good compromise between compactness, clutter and
simplicity. However, we do not claim that it is the best possible
layout, as it makes little use of the additional dimension. Other
layouts might use the spatial arrangement of neurons to encode
properies of them or their relationship. We plan to investigate
this in future work.

C. Use Case Specific Features

There were a few other challenges we had to address, to
make our visualization feasible to be used by the experts in
our use case. First of all, the output of the network controlling
the robot is not nearly as interpretable as the output of the
MNIST network in [6]. Instead of encoding class probabilities,
the output layer of our networks encodes a path that the robot
will follow. Hence, we added a glyph to our visualization that
contains the input image and plots the path that the robot will
take as a blue line. An example of this can be seen at the
top of Figure 1. The experts wished to be notified when the
robot touched the wire, so we made the background of our
visualization flash red for a short time, if a respective network
package is received. Additionally, we added a function to save
and load the state of the visualization. We did this because
switching from and to VR frequently can cause accidental
inputs which might cause the user to fly far away from the
visualization or change the parameters in an undesired fashion.

IV. EXPERT REVIEW

To test our hypothesis that a node-link visualization of
a complete network is helpful to machine learning experts,
we performed an expert review. Overall, we interviewed four
experts. Two of them were actively working in our use case



and had also worked with us and our visualization before.
The other two had heard of the project but were not directly
involved and had never seen the visualization.

Every person we interviewed started with an exhaustive tour
of our visualization and an explanation of all its features. After
that, they were given the opportunity to look around freely as
long as they wanted, while being told to think aloud as much
as possible. When they were done, we conducted a structured
interview with them to gather qualitative feedback.

All four experts agreed that our visualization is helpful. One
even stated that they developed multiple visualizations of their
own before but that our visualization is more helpful than all of
them. We also asked the participants which part of their work
could benefit from our visualization and received a variety
of answers. Two of the experts stated that our visualization
could help them find out if more layers or neurons are needed
in the network. While they did not elaborate on how exactly
they would do this, we suspect that this is because they get
a more intuitive understanding of the quantities controlled
by hyperparameters. Since hyperparameters are usually only
defined numerically, actually seeing the scale of the resulting
network might help the experts to determine where they are
too high or too low. One expert even stated explicitly that
the visualization is helpful to get a feeling for the size of
the network. Additionally the experts mentioned they could
determine similar feature maps, which filters were important,
which neurons got more updates, which neurons were acti-
vated more frequently or generally if the patterns learned by
the network made sense to them. One of the experts who
was working on the use case even spotted a potential error in
their implementation using the visualization. This happened
when they were looking at a pooling layer and noticed that it
appeared very dark in comparison to the convolutional layer
below. Since their pooling was supposed to work using the
maximum operation, directly comparing the values showed
that they did not make sense which hinted at a potential
implementation error.

We also asked the experts if they would like to see more
networks visualized in a similar fashion. Two participants
answered that they would definitely like to see even more
complicated networks like, e.g., recurrent ANNs. One said
they would like to try it but was unsure if it would provide a
benefit. The last expert said that the tool is useful for scientific
purposes but in practical settings they would not have the time
to analyze the network in that much detail.

We also received criticism and suggestions from the experts.
For example, all but one expert suggested to show only the
most important edges instead of all of them. The same experts
also requested a way to keep one node selected without
pointing at it, to look at the edges from different directions.
Two even suggested that they wanted to follow the edges
through multiple layers, like a tree. Another point that two
experts mentioned was that the fully-connected layers were
too complicated to really gain information from them. Other
points of criticism we received were that it was too difficult
to turn the individual layers, that the flashing when the wire

was touched felt too aggressive and that the selection ray is
sometimes difficult to see in front of a red background.

V. CONCLUSION

We have presented an interactive node-link visualization for
ANNs based on immersive virtual reality. Unlike previous
work, our system is targeted explicitly at machine learning
experts. We then performed an expert review to test our
hypothesis that a node-link visualization can help them in their
everyday work. We perceived the feedback from the expert
review as generally positive and see it as a strong hint that
our hypothesis holds. Obviously more evaluation needs to be
performed to show that node-link visualizations can actually
improve the workflow of machine learning experts. However,
we are optimistic that a future revision of our visualization
could be actively used by these experts on a regular basis.
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