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Figure 1: An immersive visualization software for the analysis of neuronal network data based on Unreal Engine. Left: A world-in-
miniature model provides an overview visualization of neuronal activity. Center: Selection and filtering regions of interest change
node renderings of a linked view. Right: Selection of single nodes in the main view shows node information.

ABSTRACT

COTS VR hardware and modern game engines create the impression
that bringing even complex data into VR has become easy. In
this work, we investigate to what extent game engines can support
the development of immersive visualization software with a case
study. We discuss how the engine can support the development and
where it falls short, e.g., failing to provide acceptable rendering
performance for medium and large-sized data sets without using
more sophisticated features.

Index Terms: Human-centered computing—Visualization—
Visualization techniques—; Human-centered computing—Virtual
reality—

Measuring and studying the functionality of neurons in the human
brain is necessary to understand various phenomena and conditions
of human development. This includes research on early intellectual
development or mental disorders such as Alzheimer’s and Parkin-
son’s disease [7, 9, 14, 16]. Typical neural models contain more than
1010 neurons and 1014 synapses distributed across different brain
regions. Given the complexity and sheer quantity of neurons, as
well as the 3-dimensional location of the data, advanced analysis
methods are required to reduce mental overload.

Immersive visualization approaches have proven to be a valuable
tool for interacting with spatial data and allowing for engaging anal-
ysis. However, using virtual reality techniques requires low latency
computation and interactive rendering frame rates while following
suitable design patterns to avoid overwhelming the user [13]. There-
fore, such applications have often been developed by specialized labs
writing custom software that is fine-tuned to specific needs. This
requires a lot of time and knowledge in several domains, ranging
from efficient computations to rendering abstraction and interaction
techniques. As affordable yet powerful consumer hardware has
made developing and using virtual reality applications more readily
available to researchers and consumers alike, the development of
immersive visualization software — also for complex medical ap-
plications —- should also become more accessible. Game engines
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such as Unity [15] or Unreal Engine(UE) [3] use highly optimized
code and processing strategies and further include ready-to-use tech-
niques for interaction and GUI building. This allows users to create
VR applications from scratch and sometimes even without any pro-
gramming skills necessary.
In this work, we want to investigate the influence of game engines
on two distinct questions:

1. Can domain experts create immersive applications without the
help of immersive visualization labs?

2. Can immersive visualization labs gain an advantage from using
game engines?

While these questions seem to tackle two independent challenges at
first, they both share a common characteristic: A first indication for
answers to both questions can be derived from investigating the ease
of developing an application without deep knowledge or extensive
research in immersive visualization. Therefore, we present a case
study on how commercial-of-the-shelf (COTS) hard- and software
can be used naı̈vely to offer immersive visualization of neuronal
simulation. We develop an interactive, immersive visualization
application built with Unreal Engine to analyze regions of interest in
a brain neural network. We discuss how the game engine provides
support and functionality for developing such software and where
limitations and challenges arise.

1 RELATED WORKS

Visualization of neuronal networks is often limited to answering
specific narrow research questions, which has led to a variety of
tools. There exist a number of 2D abstractions, see, e.g., Keiriz et
al, [8] representing connections as Hinton diagrams [11] or heatmaps
to show the temporal changes within a network [13]. There also
exist desktop applications that combine 2D abstractions and 3D
renderings such as ViSimpl [4] or NEST Desktop [1]. The limitation
to 2D display technology, however, fails to provide an intuitive
understanding of neuron locations [10] and topological features,
and does not scale well for large simulations. Therefore, immersive
visualizations provide a promising approach in brain analysis [6] and
3-dimensional graph analysis [18]. Jaeger et al. [7] provide a useful
overview of tasks and challenges for the immersive analysis of brain
data and provide a prototype application based on Unity extended by
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custom R and D3 functions for processing and visualization. Most
existing immersive visualization tools develop their own custom
software [8,10,12,17] which is highly tailored toward their respective
goals and require the integration of several aspects such as rendering,
interaction, and data management. We investigate how off-the-shelf
game engines can support the development of such software without
any external dependencies or custom extensions.

2 USE CASE

Our case study is set to represent a workflow for domain scientists
who want to analyze computational neuroscience simulation
data with commercial-of-the-shelf hard- and software. The data
describes simulated neuronal activity taken from a NEST [5]
simulation, which computes network activity on a Brunnel network.
It contains 3126 neurons divided into two populations of inhibitory
and excitatory neurons; they span 981876 neuron connections and
generate 96396 spiking events over the simulation time. To give
a spatial and temporal understanding of the data an application is
required that allows users to observe the activity and structure of
the network. Schneiderman’s mantra was chosen to reduce the
amount of data that is visible at the same time as this provides two
advantages simultaneously: Not only does the “overview first, detail
on-demand” approach provide an opportunity for performance
improvements, but at the same time can help reduce the mental load
in the analysis of the network.

The resulting application consists of three components: a minia-
ture model, a main view, and a control menu as seen in Figure 1.
The data in the miniature view represent the whole network’s data at
an abstract level within a fixed-size, movable, transparent cube to
provide an overview of the network. Its size and position are based
on the user’s field of view to allow for suitable interaction. Groups
of neurons with statistical equivalence, i.e., type and distance, are
binned together to create subsets that can be displayed on demand
in the main view. Each subset is represented by a scaled node at
an averaged position as well as optional summarized connections,
thus reducing the number of objects to render. The node color inten-
sity indicates the activity level of the whole region, thickness and
saturation of connecting lines indicate the number of connections
and connection strength between regions, respectively. Connections
can also be filtered based on a set of user-defined parameters via the
user interface seen in Figure 3. By selecting a node in the miniature
view, users select a subset of interest that is linked to the main view.
The main view displays all neurons and connections in the selected
subset(s) as well as the activity of individual neurons. The same
visualization and filtering options can be applied as in the miniature
model. Targeting neurons in this view activates an information panel
providing more precise information on the neuron. The user can
move into any region or observe the whole network from a distance.
Movement is realized by right-hand-directed steering, allowing the
user to observe the spatial relations while moving through the net-
work. If larger distances need to be overcome quickly, a proxy
representation of the user in the miniature model can be moved to a
new position. Upon release, the user is teleported to the destination.
The selection of neurons is provided in two modes: individual nodes
can be selected in the main view and miniature view via standard
ray casting. For group selections, a selection volume is shown in
the miniature model. The position of the selection volume can be
controlled through the controller’s movement.

A work machine equipped with an Intel Core i9-10900X
10C20T@3.70GHz with 32 GB RAM and an NVIDIA RTX 3090
was used, representing strong but not high-performance hardware.
As for the display technology, we decided to use the HTC Vive Pro
2 as a representative higher-end head-mounted display.

3 DISCUSSION

The main goals of the case study were to determine the degree of
expert knowledge needed when developing applications with COTS
game engines and if such engines can provide a good base for im-
mersive visualization labs. Game engines can potentially accelerate
the development of new immersive visualization methods and ap-
plications. Especially in an academic context, people fluctuation in
university research labs is a continuous issue. High fluctuation, e.g.,
due to students joining only for the period of a thesis, means that it
is important to get them up and running quickly to stay efficient and
successful as a research group. Using established COTS software
increases the chances that potential candidates already bring experi-
ence and familiarity with them before joining the lab. Additionally,
it allows existing researchers in the lab to refer to existing tutorials,
documentation, and code to ease the entry. To choose a suitable
game engine for the workflow, we compiled the following primary
requirements:

• Wide Adoption A wide adoption addresses the aforemen-
tioned advantages of the availability of resources and the
chance that new workforce already brings some experience
with them. Additionally, it increases the chance of long-term
support.

• Large Feature Set A large feature set speeds up the develop-
ment of new applications by providing existing functionality
that can be used to compose new methods.

• Performance Especially in the context of immersive visualiza-
tions, the application’s performance is paramount. Real-world
applications are often built with large and complex data, and
immersive environments must always provide a smooth expe-
rience regarding interaction and rendering.

• Accessibility The entry barrier should be as low as possible
to allow new developers to achieve results fast while not com-
promising on performance. This is especially important in an
academic context as, e.g., students joining for a thesis have
limited time to develop and evaluate new methods.

• Extensibility/Adaptability The ability to easily extend the
engine allows development for special requirements and meth-
ods that benefit from an implementation inside the engine’s
code. Adaptability allows changes to the engine itself in case
the provided implementation is not sufficient for a given task.

• Flexibility The engine should make it easy to develop applica-
tions for a wide range of systems. This is especially important
in a fast-changing market like today’s COTS hardware market.
A flexible engine allows to easily keep up with the market’s
state-of-the-art and cooperation partners’ requirements in terms
of hardware.

Based on the above criteria, we decided to use Unreal Engine(UE)
4.27 for the case study as it fulfills the aforementioned requirements.
UE is an established game engine with wide adoption. The commer-
cial backing promises long-term support by the developers and good
resources to get new users up to speed. A large community provides
additional resources besides the official resources. Especially user-
generated documentation and code can be beneficial to reduce the
training period and the need to implement the required functionality.
UE provides a large feature set that covers most needs for creating
new applications. A big library provides a lot of basic functionality
needed in immersive visualizations, such as efficient math opera-
tions, spatial queries, object intersections, etc. Furthermore, a lot of
tooling is provided to make the development of applications easier,
e.g., profiling and packaging binaries for distribution. UE is a highly
optimized game engine written in C++. The capability of the engine
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can be observed in tech demos, benchmarks, and when looking at
existing applications and games. Thus, making it a good fit for
immersive visualization applications that often have similar require-
ments for performance and interactivity. Besides the availability of
resources, another benefit is that UE is geared toward a variety of
developers. Not only are experienced C++ developers considered
as users, but also users with less or no knowledge of C++ by pro-
viding ”blueprints”. Blueprints are a visual programming language
integrated into UE and its editor that allows code-less programming.
C++ code can be combined with blueprints by allowing developers
to expose custom C++ code that is usable in blueprints. This makes
them useful for newer developers and an excellent tool for experi-
enced developers that want to do rapid prototyping. Thus, UE strikes
a good balance between performance and accessibility. Due to the
access to source model, developers have full source code access,
which makes extensibility and adaptability easy for experienced
developers. Functionality can be added to the engine core, and the
engine’s inner workings can be examined, allowing one to extend or
adapt the engine to one’s liking and needs, e.g., when special hard-
ware should be supported or performance-critical methods should be
embedded as low as possible. Lastly, UE provides flexibility using a
Render Hardware Interface (RHI), which abstracts render commands
from the underlying rendering backends. Rendering is abstracted
such that even custom rendering code can be written independently
of the rendering backend by using Unreals RHI, thus allowing de-
velopers to run the software on a plethora of systems. Especially in
today’s heterogeneous market, this is a big win as many different
devices are supported with the same application allowing one to
choose the hardware best suitable for the task at hand. Applications
can be operated on standalone head-mounted displays running on
Android or tethered on Windows with DirectX or Linux with Vulkan
without any changes to the application. Functionality for application
input, output, and networking are abstracted analogously to provide
multiplatform support.

To gather experience with the advantages, disadvantages, and
limitations of using UE for applications, we went for a naı̈ve imple-
mentation of the application described in the use case. We decided
to stick to resources that are easily accessible to new developers to
create an application from the perspective of an inexperienced user.
Therefore, we deliberately did not apply optimization techniques
that may be proven techniques for immersive visualization experts
but may be unknown to domain scientists of other disciplines. The
available resources gave a good introduction to the engine and instal-
lation process and made it easy to start with development quickly.
The application setup was easily done via the UE Editor, and we
were able to run it on the HTC Vive Pro 2 in a matter of minutes.
Resources describing how to implement the features needed for our
application were broadly available. The first successful results were
quickly achieved and allowed us to load the data from disk and ren-
der neuron data via simple primitives with provided UE functions,
proving that UE provides both flexibility and accessibility. Due to
UE’s tooling, we were able to quickly change the representation of
the visualization to our liking. This was primarily achieved using
the graphical material editor that allows users to develop shaders
in a visual editor. Changes to the shader are hot-reloaded and can
be previewed on reference geometry to observe the effect. Thus
allowing us to influence the visual representation of the application
with ease and without specific knowledge of graphic APIs. Similarly,
we could quickly and comfortably implement different interaction
techniques needed for the use case. The engine provides many out-
of-the-box features that can be composed to implement standard
immersive visualization interactions. The UE Editor allowed us
to iterate quickly over different interaction methods and visualiza-
tions. Changing parameters from the UE Editor with direct visual
correspondence and no need for recompiling allowed fine-tuning
of interactions without friction. Similarly, we were able to visually

Figure 2: A complex and interactive UI for display and filter operations
created within a drag and drop UI editor in Unreal Engine.

build a 2D User Interface(UI) in the WYSIWYG Editor via UE’s
UI framework called UMG. UE provided us with many different UI
elements for input, output, and layout of the UI that are easily em-
beddable in the immersive visualization as spatial UI. This allowed
us to easily create a rather complex UI with different elements and
tabs.

While the aforementioned features allowed us to prototype our ap-
plication rapidly, we experienced the first performance issues rather
quickly. One bottleneck was the naive spawning and destroying of
objects whenever they should be visible or hidden. To stick to a
naı̈ve implementation, neurons were created and deleted every time
they were toggled from invisible to visible and vice versa. Even
small numbers of on-demand object creations lead to obtrusive lags
in the user experience. Table 3 shows the time for spawning dif-
ferent amounts of neurons as new game objects. Each neuron is
programmed as a game object with interactive behavior, i.e., it can
be selected/deselected and interacted with. The neurons’ logic, the
interaction, and the visual representation, e.g., the spiking animation,
were implemented in blueprints. We observed that even for small
numbers like 176 neurons, the spawning of objects on demand can
take a considerable amount of time. With 0.193s, the time to create
the objects takes roughly 18x the frame budget when assuming the
standard of 90 frames per second. When spawning roughly half of
the dataset at once, it takes nearly 2 seconds to spawn the objects,
thus rendering the application impracticable. A similar but less criti-

#Nodes Time to Spawn FPS
200 109ms 90
720 383ms 90
1938 1097ms 45
3125 1890ms 28

Table 1: Response time for spawning distinct numbers of neurons
simultaneously and the resulting framerate while active.
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cal result can be observed when toggling the visibility of connections
between neurons (c.f. Table 2). The cost of spawning connection
objects is smaller compared to neurons since a connection has less
functionality and is thus a smaller object. However, due to the high
connectivity in the represented network, connections outnumber
neurons. Resulting in disruptive lags when toggling meaningful
amounts of connections. This behavior is especially pronounced

#Connections Time to Spawn
2718 16ms
4877 29ms
9053 64ms

17469 133ms

Table 2: Response time for spawning distinct numbers of connections
simultaneously.

when spawning objects through blueprints iteratively while setting
the object’s properties such as position, color, etc. Upon further anal-
ysis, it could be seen that the most severe bottlenecks are traceable
to blueprint performance. Especially, tasks that require iterating over
data, such as filtering, sorting, and creating objects, are noticeably
slower in blueprint implementations. This is significantly limiting
for immersive visualization applications as iterating over the data is
a common and recurring requirement in a lot of applications. After
implementing basic functionality to spawn the neurons and their con-
nections for the main view, the functionality of the miniature view
was implemented next. To reduce the number of simultaneously ren-
dered neurons, we implemented a linked view that shows the activity
in a spatially binned region as a representative neuron in a miniature
view. It was quickly seen that these basic approaches helped to
alleviate the issue but were still not enough to completely remedy
the problems. More involved methods would have been needed to
improve the application’s performance further. E.g., using instanced
rendering, object pooling, optimized shaders, or implementations of
the features in C++. While various advanced techniques are avail-
able in the engine, the documentation often fails to explain precisely
when and how to use them. Thus, those techniques were deliberately
not used in the case study as the availability and necessity of these
features would likely not be apparent to inexperienced users. Many
online resources are written in the context of game development
and show implementations that do not scale well for large applica-
tions. The simplicity of the proposed solutions often outweighs the
increased complexity and difficulty to implement efficient solutions.
While this is fine for a few objects in a game, the cost-benefit ratio
quickly changes when applied to thousands of objects in a visual-
ization. Documentation of advanced features is often sparse and
sometimes best documented in code. Even though the source code
is available, the complexity of the engine makes quick changes often
prohibitive. This is especially true for features touching the core
functionality, e.g., the rendering. However, these advanced features
are necessary to maintain performance in immersive visualization.

In summary, the naı̈ve implementation of the use case has shown
that even highly performant engines like UE can quickly run into
performance issues when not used correctly. This is especially crit-
ical in combination with the perceived accessibility of the engine.
Users could easily get the false impression that the provided and
prominently featured functions like blueprints can also be easily
applied to immersive visualization applications. Thus, early design
decisions can become a bottleneck when scaling the data size. Ad-
ditionally, UE provides a lot of different building blocks to create
immersive applications but not ready-to-use solutions. Interaction
techniques like IntenSelect [2], which would be very useful for our
use case due to the interaction with many densely packed objects,
were not readily available. Thus, pre-existing knowledge in immer-
sive visualization is needed to be aware of such techniques and to be

able to implement even basic interaction techniques.

4 CONCLUSION

In this case study, we examined the benefits and limitations of
commercial-off-the-shelf software for developing immersive visual-
ization applications. To observe the advantages and disadvantages,
we implemented a linked-view visualization for data from compu-
tational neuroscience. To investigate whether new developers in
the lab or other domain scientists could implement such an applica-
tion on their own, we deliberately stuck to a naı̈ve implementation.
Unreal Engine’s functionality allowed us to implement interaction
techniques easily, create UI elements and build a first implementa-
tion quickly. Compared to implementations on custom software, a
lot of development time was saved using these features. However, it
was also shown that even small data sets proved challenging for the
application. This was mainly caused by the fact that features of the
engine which are easy to use, often do not scale very well. Features
that provide the required performance are often not documented
well or prominently featured in online resources. Additionally, UE
only provides building blocks for most cases that the developer
must combine. In the case of interactions, for example, this requires
knowledge of the immersive visualization domain to provide the best
solution for the applications. Our findings suggest that implementing
immersive visualization applications, while becoming easier, is still
a challenging task that needs expert knowledge. Core challenges like
providing performant implementations and system design are still
difficult to solve at scale. Additionally, advanced user interactions
and navigation techniques are often not provided out of the box.
Thus, domain scientists will still benefit significantly by working
with experts from immersive visualization labs. On the other hand,
those experts can efficiently use the functionality provided by game
engines like Unreal Engine. Existing COTS software, like game
engines, often provides powerful and optimized features that can
be utilized by experienced developers aware of advanced methods.
Furthermore, it provides many convenient features that make de-
velopment easier and more convenient for developers of all levels.
Especially open source engines are often extensible and adaptable,
thus, providing the opportunity to customize the engine to the lab’s
needs. While using such software makes the development of appli-
cations more accessible to new developers, such as students joining
the lab, the accessibility can also be a disadvantage. New develop-
ers must be sensitized to make them performance-aware early on to
prevent them from over-reliance on the engine’s optimization. There-
fore, educating new developers on the advantages and disadvantages
of using such tools and providing concrete guidelines for applica-
tions in immersive visualization is essential. Experience obtained
with specific tools must be turned into best practices to guide users
through the development and stop preventable bottlenecks from oc-
curring. With these limitations in mind, our case study suggests that
game engines can be an excellent base for immersive visualization
labs to build upon. The performance, usability, and flexibility that
modern engines are built with can accelerate the development and
do not lessen the need for immersive visualization researchers and
labs. Taking advantage of existing COTS software and hardware
allows labs to advance scientific knowledge by focusing their expert
knowledge on immersive visualization methods instead of technical
implementations.
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