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Figure 1: We present a tool for exploring historical data in VR using a head-mounted display. Left: The user is placed on a platform
representing the main historical fragment (e.g., a person or an event) of their research (here Albert Einstein). Other related fragments
are represented as colored labeled spheres and are arranged around the user based on their historical interrelationships. Users
can select a sphere to make it the new main fragment, thereby allowing for an immersive exploration of the dataset. Right: For
every sphere, a detail window with more information on the corresponding fragment can be opened. An exploration history in
the lower field of view shows the order of visited main fragments (here Physics and Erwin Schrödinger ). If a sphere is marked, a
corresponding mark appears on a compass view in the upper field of view (e.g., a blue mark for Albert Einstein). The relation details,
here shown for Albert Einstein, Austria-Hungary, and Max Planck, reveal additional details about their historical connections.

ABSTRACT

Traditional digital tools for exploring historical data mostly rely on
conventional 2D visualizations, which often cannot reveal all rele-
vant interrelationships between historical fragments (e.g., persons or
events). In this paper, we present a novel interactive exploration tool
for historical data in VR, which represents fragments as spheres in a
3D environment and arranges them around the user based on their
temporal, geo, categorical and semantic similarity. Quantitative and
qualitative results from a user study with 29 participants revealed
that most participants considered the virtual space and the abstract
fragment representation well-suited to explore historical data and
to discover complex interrelationships. These results were particu-
larly underlined by high usability scores in terms of attractiveness,
stimulation, and novelty, while researching historical facts with our
system did not impose unexpectedly high task loads. Additionally,
the insights from our post-study interviews provided valuable sug-
gestions for future developments to further expand the possibilities
of our system.

*e-mail: melanie.derksen@tu-dortmund.de
†e-mail: kuhlen@vr.rwth-aachen.de
‡e-mail: mario.botsch@tu-dortmund.de
§e-mail: me@tim-weissker.de

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques; Human-centered computing—Visualization—
Visualization systems and tools

1 INTRODUCTION

Exploring historical relationships requires the analysis and compari-
son of different sources that are often difficult to interpret without
specialized domain knowledge. To assist learners with this pro-
cess, several digital tools have been proposed that provide curated
interactive visualizations like maps, timelines, or graphs. While
some tools like Palladio1 are more tailored to the purpose of pre-
senting finished research results, others like HisVA [9] focus on
an active learning process while interacting with the data, which
is claimed to be more beneficial than traditional textbook-based
learning. However, historical exploration tools to date are mostly
based on classic 2D visualizations which are inherently optimized
for demonstrating attribute relationships along only one or two spa-
tial dimensions. Unfortunately, this is often not optimal to discover
more complex interrelationships between historical fragments (e.g.,
persons or events), which still requires considerable manual efforts.

To approach this limitation, we present a novel interactive explo-
ration tool for historical data in VR. The system is not only designed
for actors from the humanities and historical sciences but also for
laypersons interested in history and people with an affinity for tech-
nology. Our approach represents historical fragments as colored

1http://hdlab.stanford.edu/palladio/



labeled spheres, which are arranged around the user to allow for an
immersive exploration of the dataset (see Fig. 1). The position of
a fragment can be influenced by more than two attributes, which
allows to make complex interrelationships more directly visible to
the user. In addition to the egocentric viewing position, the user can
also switch to an exocentric viewing position to gain a better overall
impression of the fragments’ structure.

Our system was developed as part of an iterative design process in
close collaboration with a team of historians. While an initial expert
review published in an earlier stage of development revealed that
our visualization of historical data is promising, it was suggested to
add more interactive features to increase its versatility and ability to
answer more complex historical questions [5]. Following the experts’
advice, we therefore expanded the feature set of our system by
adding options like detailed information panels on single fragments
as well as on their interrelationships (see Fig. 1 right). We then
conducted a formal user study to analyze the overall usability and
suitability of our system as a historical research tool for laypeople.
In summary, our research led to the following contributions:

• a novel way of visualizing and arranging historical fragments
in a meaningful way to reveal complex interrelationships,

• a corresponding set of interaction techniques that enables users
to interactively adjust the visualization’s parameters in order
to facilitate the exploration process,

• quantitative results of a user study with 29 historically inexperi-
enced participants demonstrating that our system was suitable
for answering historical questions in a particularly attractive,
stimulating, and novel way while not inducing unexpectedly
high task loads compared to other systems in the literature,

• qualitative results based on interviews showing that both the
3D virtual space and the abstract visualization are well suited
to explore historical data and revealing promising areas for
future developments.

Our findings suggest that our system has the potential to serve as a
viable supplement to conventional historical exploration methods.

2 RELATED WORK

We first discuss the existing landscape of interactive historical data
exploration tools for 2D desktop systems (Section 2.1). We then
analyze the benefits of 3D and immersive data exploration, as shown
by systems in other domains, to motivate our developments (Sec-
tion 2.2). Finally, we discuss the different reference frames relevant
for the design of immersive data exploration systems (Section 2.3).

2.1 Interactive Exploration of Historical Data in 2D
The idea of self-guided learning and knowledge acquisition via
digital tools in history has been explored in several prior publica-
tions. Visual analytics systems like POLIS [14], VAiRoma [2], and
HisVA [9] follow the same approach to help people explore histori-
cal datasets by providing individual overviews, mostly consisting of
traditional and well-known visualization methods like data tables,
timelines or map views, and revealing relationships among events
that may not be directly apparent. Each of these approaches focuses
on a specific topic, but the presented concepts can also be transferred
to different datasets. While POLIS focuses on the sociopolitical
landscape of the Ancient Greek world, VAiRoma addresses the Ro-
man history and stands out with its topic view for displaying topic
hierarchies, topic content, as well as topic weights. HisVA focuses
on an active learning process while interacting with the data, which
is claimed to be more beneficial than traditional textbook-based
learning. Apart from that, VisKonnect [15] is intended to represent

characters involved in common events and comes up with a relation-
ship graph as well as a chat interface that enables typing in a query
and generates a short textual answer.

It is to be noted that each of the mentioned tools is a 2D non-
immersive desktop application which comes along with a limited
space and consequently might not be optimal for visualizations that
should offer more complex relationships. That is why we take a
closer look at the possible benefits of a third spatial dimension and
an immersive virtual environment (VE), which offer a much larger
exploration space and can make attribute relationships along more
than two spatial dimensions visible.

2.2 Benefits of 3D and Immersive Data Exploration
Lisle et al. [17] propose and investigate the so-called Immersive
Space to Think, that helps analysts to better understand large text-
based datasets. Here the immersive space is used to organize docu-
ments according to individual preferences to support the individual
sensemaking process, which is stated to be easier as compared to
a traditional desktop or laptop display. McIntire and Liggett [19]
analyze several data and information visualization applications to
identify which kinds of tasks benefit from 3D representations. They
conclude that, among others, 3D visualizations are particularly bene-
ficial for the precise spatial localization of objects, complex imagery
analysis, and the manual interaction with data or virtual informa-
tion. Furthermore, they found out that 3D visualizations can provide
performance benefits that seem to reflect cognitive benefits, which
provides for an increased understanding of spatial and/or multi-
dimensional data. Etemadpour et al. [6] investigate the effect of
stereoscopic environments compared to a 2D screen when used for
the visual analysis of multi-dimensional data after projection into a
3D visual space. Their user study confirms that distances between
individual objects can be perceived better in VR, which leads to an
overall improved performance for local analysis tasks that focus on
a specific part of the visuals. Allcoat and von Mühlenen [1] directly
investigate the effects of interactive learning in VR on performance,
emotion, and engagement by comparing it to conventional textbook
learning as well as passive learning by watching videos. Their re-
sults show that learning in VR leads to the highest engagement, an
increase in positive emotions, and a decrease in negative emotions.
Kraus et al. [13] investigate the impact of immersion on cluster iden-
tification tasks in abstract scatterplot visualizations. They show that
the 2D visualization on the screen performs worse compared to the
3D visualizations with respect to accuracy, efficiency, memorability,
sense of orientation, and user preference. VR, on the other hand,
allows for improved overviews of 3D data due to more natural navi-
gation and better orientation and memorability possibilities. On top
of that, Wagner Filho et al. [23] state that exploring 3D scatterplots
with an head-mounted display (HMD) leads to a smaller effort in
finding information and offers a much larger subjective perception
of accuracy and engagement as opposed to desktop applications.

Taken together, all of these results indicate that the visualization
and exploration of data in an immersive environment can provide
substantial benefits over conventional 2D data representations. Mo-
tivated by these insights, we saw merit in the development and
analysis of an immersive exploration tool for the field of history and
proceeded with more detailed design questions for such a system.

2.3 Frames of Reference for Immersive Data Exploration
Immersive visualization systems may give the user an exocentric
view onto the data from external viewpoints as well as an egocentric
view onto the data from within the data themselves. Wagner et
al. [22] investigate the effect of these two frames of reference in a
more detailed study. While their results indicate that the egocentric
frame of reference significantly reduces mental workload, they also
observe that the exocentric frame of reference improves user perfor-
mance in some of the given tasks. They therefore suggest to allow



users to switch between both frames of reference based on their
intentions, which we adapt in the design of our immersive system
for exploring historical data.

3 IMMERSIVE EXPLORATION OF HISTORICAL DATA IN VR
Our VR system builds upon DBPedia2 and WikiData3 to retrieve
important historical fragments as well as connections between them.
Using the Unity game engine, we embed fragments into a 3D VE
to be explored with an HMD and corresponding controllers. While
we specialized our developments on the HTC Vive4 and the Vive’s
dedicated controllers, the underlying concepts are applicable to other
HMDs as well.

3.1 System Basics
The system starts with the selection of an initial historical fragment
the user is interested in. This fragment then becomes the first main
fragment, which is represented as a colored circular platform the user
is placed on. The DBpedia graph database provides all fragments
connected to that main fragment. We take the first 50 of these so as
not to overload the visualization. These so-called related fragments
are represented as labeled colored spheres and arranged around the
platform in a spherical fashion (see Fig. 1 left) in our visualization,
which puts the user into an egocentric view from within the data.
While the color of each sphere indicates its fragment’s category
(e.g., agent, event, ...), the sphere’s size is related to the number
of sources (i.e., dbo:wikiPageExternalLinks) available in the
corresponding article on DBpedia.

3.2 Arrangement of Related Fragments Around the User
Related fragments are arranged around the user based on two dis-
similarity measures, namely the relative dissimilarity Drel and the
central dissimilarity Dct . Both of these high-level dissimilarities are,
in turn, modeled as weighted combinations of low-level dissimilari-
ties regarding individual attributes of fragments. Drel is computed
for each pair of related fragments and used to position the spheres on
a spherical shell around the user so that fragments with a low value
for Drel are close to each other. Dct is calculated for each pair of the
main fragment with a related fragment, which then determines the
individual distance (or radius) of that related fragment to the center.

3.2.1 General Arrangement Algorithm
In the first step of the arrangement algorithm, all spheres are placed
on a spherical shell around the user, all having the same distance to
the center. To do so, we rely on the UMAP algorithm [18], a scalable
algorithm for dimension reduction, which is competitive with t-SNE
in terms of visualization quality, and arguably preserves more of the
global structure with superior run time performance. Additionally,
it allows various output metrics, which is suitable for our case, as
we want a spherical embedding. With the Drel as the input metric
and the attribute values of the fragments as input data, UMAP finds,
with the haversine as its output metric, a spherical embedding. As
an embedding all over a sphere makes some data hard to see and
may lead to dislocations of the neck, we add two additional artificial
points in its optimization process that are fixed on the poles and
constantly repel all the other data points to bypass constellations
in which spheres accumulate directly above or beneath the user.
Based on this initial arrangement of spheres the second step of our
arrangement algorithm then uses Dct to change the radial distance
of each related fragment’s sphere according to their dissimilarity
value. Thus, spheres are either pushed farther away or placed closer
to the center while staying in the interval of a minimal distance of
1.7 m and the maximal distance of 3 m which were considered to

2https://www.dbpedia.org
3https://www.wikidata.org/wiki/Wikidata:Main Page
4https://www.vive.com/de/product/vive-pro/

be appropriate distances in our design process. In the final layout,
longitude and latitude are determined through UMAP based on Drel ,
while the radial distance to the center is computed based on Dct . This
two-step procedure has the benefit, that fragments are less likely
placed behind one another, but all are visible from the center.

3.2.2 Computation of Drel and Dct

The high-level dissimilarities Drel and Dct are based on a weighted
combination of the fragments’ low-level dissimilarities regarding
their temporal (t), geo (g), and either their semantic (sem) or cat-
egorical (c) attributes values. For a visualization that consists of
the set of fragments F, we first compute pairwise distances dista for
all fragments i, j ∈ F for each attribute a ∈ {t,g,sem,c}. Then we
transform them per attribute a to a low-level dissimilarity da ∈ [0,1]
where 0 means maximally similar and 1 maximally dissimilar. This
leads to a normalized measure of dissimilarities for each individual
attribute. This is needed since our distances for the attributes are
measured in different units with different orders of magnitude. Thus,
if we would skip the transformation, an attribute with higher order of
magnitude would have a greater impact on Drel and Dct , respectively.
If ai is the attribute value for the attribute a of fragment i, then it is
considered invalid if no data is available for ai. More formally, a
low-level dissimilarity da of two fragments i, j ∈ F regarding one
attribute a ∈ {t,g,sem,c}, with ai,a j being their corresponding at-
tribute values, is defined as

da (i, j) =


dScalinga (i, j) if both ai,a j are valid,
0 if both ai,a j are invalid,
1 otherwise,

with dScalinga being

dScalinga (i, j) =


dista(i, j)−distMin

distmax−distmin
if distmin ̸= distmax,

0 if distmin = distmax = 0,
1 otherwise.

The value
distmax = max

m,o∈F
dista (m,o)

represents the maximal distance according to attribute a within the
frament set F and

distmin = min
k,l∈F, k ̸=l

dista (k, l)

is the respective minimal distance according to attribute a. Since the
value for dScalinga depends on the minimal and maximal distances
of the set of fragments F of the current visualization, a pair of two
fragments may have different values for da if they appear hand in
hand for different main fragments and therefore different sets of
related fragments with different minimal and maximal distances
regarding the attributes. While Drel takes a convex combination of
the low-level dissimilarities regarding the attribute values of t,g,c
for two fragments i, j into account, Dct makes use of the values for
t,g,sem:

Drel (i, j) = wrel,tdt (i, j)+wrel,gdg (i, j)+wrel,cdc (i, j) , (1)

Dct (i, j) = wct,tdt (i, j)+wct,gdg (i, j)+wct,semdsem (i, j) , (2)

with wrel,t +wrel,g +wrel,c = 1, wct,t +wct,g +wct,sem = 1,

wrel,t ,wrel,g,wrel,c,wct,t ,wct,g,wct,sem ≥ 0.

As a result, if e.g., wrel,g has a high value, fragments will aggregate
into clusters if they share locations with a short distance. Addition-
ally, if e.g., wct,t has a high value, fragments are placed closer to



the center that took place at the same time. The so-called weighting
triangles serve as appropriate UI elements that allow to modify the
respective weights that influence both dissimilarity estimations in-
dependently (see Fig. 2). The user can select a point in one of the
triangles with a ray attached to the user’s controller. The weights are
determined as the barycentric coordinates of that point with respect
to the triangle corners. In this way the arrangement of fragments
can be modified based on the user’s interest and the result provides
insight into the relation of surrounding fragments among themselves
as well as to the main fragment. In the following we present how we
calculate the separate distances for the attributes t,g,sem,c, which
are the bases for the corresponding dissimilarities.

Computation of Temporal Distance To compute the temporal
distance distt between two fragments i, j, the minimal separating
interval regarding their time periods ti and t j is considered. A frag-
ment’s time period ti is an interval

[
ti,s, ti,e

]
with a start date ti,s and

an end date ti,e, each of which is converted to a number of days.
Two time periods ti and t j overlap, if their intersection is not empty:
ti
⋂

t j ̸= /0. The temporal distance between two fragments i, j in days
distt is calculated with

distt (i, j) =
{

min
{
||ti,s − t j,e||, ||t j,s − ti,e||

}
if ti

⋂
t j = /0,

0 otherwise.

Computation of Geo Distance To compute the geo distance
distg between two fragments i, j, the great circle distances distGC
of all their corresponding locations are compared in pairs, and the
shortest distance value is taken. In a figurative sense, this provides
information about whether two fragments happened or had been in
the same place. Since one fragment i may have multiple locations,
its set of locations is Gi =

{
gi,n

}
n∈N, where one location gi,n is a

pair of longitude and latitude
(
φi,n,θi,n

)
. The geo distance between

two fragments i, j in km can thus be calculated by

distg (i, j) = min
gi,n∈Gi

min
g j,m∈G j

distGC
(
gi,n,g j,m

)
,

distGC
(
gi,n,g j,m

)
= r arccos

(
sin

(
θi,n

)
sin

(
θ j,m

)
+cos

(
θi,n

)
cos

(
θ j,m

)
cos

(
φi,n −φ j,m

))
,

with r ≈ 6371 km being the Earth’s radius. Note that the multipli-
cation with r is only relevant for displaying the shortest distance
in km in the relation details (see Fig. 1 right). For the arrangement
calculation with Drel and Dct , it can be neglected.

Computation of Semantic Distance As semantic distance,
we make use of the dbo:abstract entries from DBPedia, and the
Sentence Mover’s Distance (SMD) similar to the Sentence Mover’s
Similarity [3], which is a metric for automatically evaluating multi-
sentence texts. To calculate the semantic distance distsem between
two fragments i, j, we therefore transform their abstracts into sets
of sentence embedding vectors semi,sem j , which serve as the basis
for the SMD calculation SMD

(
semi,sem j

)
. The corresponding

sentence embedding vectors are taken from the pretrained sBERT
model [21] ‘all-MiniLM-L12-v2’5. As entries for the document
vectors used in the SMD calculation, we use uniform weights instead
of custom weights based on the number of words per sentence.
Furthermore, we choose the cosine distance as the SMD’s cost
function. Finally, since our concept relies on distances, we omit the
last computation step of Clark et al. [3] which would transform the
SMD into a similarity. Therefore, distsem is given by

distsem (i, j) = SMD
(
semi,sem j

)
.

5https://www.sbert.net/docs/pretrained_models.html

Computation of Categorical Distance The categorical dis-
tance distc is 1 if two fragments do not share the same category.
Otherwise, it is set to 0. Therefore, if ci and c j are the categories of
two fragments i, j, then distc is defined as:

distc (i, j) =

{
1 if ci ̸= c j ,
0 otherwise.

3.3 User Interaction
Our initial expert review presented in earlier work [5] already pro-
vided information about which interaction possibilities are desirable
for a productive exploration process. That served as a basis for the
development of a set of interaction techniques that enable users to
browse through our visualizations interactively. Navigation is done
exclusively through movements in the real world. However, the
application is designed in such a way that everything can be done
from one position. In the following we describe what kind of specific
interactions and items were developed.

Figure 2: The weighting triangles let the user modify the fragments
arrangement. Thereby, the central weights determine according to
which attributes the distance of fragments to the center should be cal-
culated, the relative weights determine according to which attributes
the related fragments should be arranged among themselves.

Browsing through fragments A related fragment floating around
the user can be selected with a ray pointer attached to the user’s
controller, which makes it the new main fragment and thus
rebuilds the visualization. The user’s standing platform then
represents the newly selected fragment and the surrounding
spheres correspond to the respective fragments related to it.
Hence, the database can be explored by browsing through the
topics and concepts of interest.

Detail window information and translation For each fragment, a
movable detail window reveals additional information like its
characteristics (e.g., name, locations, time period, etc.), an
image, and an abstract (see Fig. 1 right).

Relation details The relation details show pairwise distance infor-
mation regarding the attributes (the gap in time, the shortest
distance between their locations and their categorical differ-
ences) for the corresponding fragments and thus explain how
the spheres’ arrangement came about (see Fig. 1 right).

Central weights By adjusting the central weights the user can in-
fluence according to which attributes the related fragments
should be positioned relative to the center (see Section 3.2.2,
Equation 2 and Fig. 2).



Relative weights The relative weights influence the dissimilarity
measure used to position the spheres on a spherical shell around
the user (see Section 3.2.2, Equation 1) to make interrelation-
ships between related fragments visible (see Fig. 2).

Help menu The help menu is a lookup table that explains all com-
ponents and the handling.

Compass Spheres can be marked to find them again more quickly.
If a sphere is marked, its appearance changes from slightly
transparent to opaque, and a mark in the color of its category
turns up on the compass, which is a guidance line localized in
the upper field of view (see Fig. 1 right and Fig. 2).

Transformation The user can grab and transform the whole con-
stellation of the related fragments (which includes translating,
uniform scaling and rotating). Thereby, the user may switch
from the initial egocentric into an exocentric perspective.

History A history is localized in the lower area of the field of view
(see Fig. 1 right and Fig. 2) and serves as a reminder, showing
the order of the main fragments visited so far.

Traverse The user can go back and forth in main fragment selection
(which is indicated by the history) at the push of a button.

Screenshots At the push of a button the user can take a screenshot
of the current field of view, allowing to retrospectively look
back at specific findings.

4 USER STUDY

To learn more about the general suitability of the presented VR ap-
plication for historical data exploration, to identify its strengths and
weaknesses, and to figure out which features are helpful and which
might even be disturbing in the exploration process, we conducted
a user study that measured both quantitative and qualitative usage
data. To make this study comparable across participants, we created
seven exemplary tasks that all users had to complete by retrieving
specific historical information using our system. These tasks were
designed in such a way that they could partially be solved by “brute
force” (e.g., by skimming through all historical fragments one by
one) or by a more efficient combination of the interactive features
provided by our system. By using this approach, we could observe
if users were able to build an understanding of our system and apply
this knowledge to solve practical tasks efficiently.

4.1 Apparatus
For the study, we used an HTC Vive Pro that has a resolution of
1440×1600 pixels per eye and an update rate of 90 Hz. The applica-
tion is based on the Unity version 2020.3.12f1. The participants had
an interaction space of about 2 m × 1 m, which was captured by two
wall-mounted base stations. However, physical movements were
voluntary since our application offers the opportunity to transform
its virtual elements instead of moving oneself.

4.2 Procedure
Participants came to our lab, were informed about the purpose of
the study, and agreed to participate voluntarily. After gathering
some demographic data, they watched an introductory video
of approximately 11 min that explained the purpose of the VR
application and the interaction possibilities as described in Section 3.
Afterwards, they were given about 5 min of time to familiarize
themselves with the system and to test the functionalities. Then,
the users had to complete seven tasks (T1 to T7) within the VR
application, that were always done in the same order. For each task
we logged the number of interaction steps (or feature calls) and the
task completion time and how often help was required. The initial

main fragment of the study was Erwin Schrödinger6 and the user
started in an egocentric frame of reference. The central weights were
completely set to semantic, meaning that the distance to the center
was based on semantic dissimilarity, while the relative weights were
completely set to time, meaning that spheres of fragments clustered
around the user that had similar time periods. Furthermore, neither
a detail window nor the help menu were opened, no spheres were
marked and there was no history of selected main fragments. Based
on this initial state (except for T4, which directly built upon the
state reached in T3), the tasks were formulated as follows:

T1: Which places has Albert Einstein7 been to? Solution:
The user first needs to find the sphere that is labeled with Albert
Einstein. To speed up this searching process, it makes sense to
take a look into the help menu which offers the color assignments
per category so that one gets to know which color is searched for.
The user then might maximize the influence of the categorical
attribute for the relative weights, which results in a clustering per
category. Based on this, the user can now identify the cluster in the
corresponding color to find the sphere representing Albert Einstein.
Then, the detail window of that sphere has to be opened and scanned
for the required location information.

T2: Find a picture of Schrödinger’s cat8 and make a
screenshot together with a picture of Erwin Schrödinger.
Solution: Similar to T1, the correct sphere has to be identified
by sorting and then visually scanning the spheres. For this
task, the two fragments Erwin Schrödinger and Schrödinger’s
cat have to be found and both corresponding detail windows
have to be opened. They then have to be placed in a way that
both can be seen in the user’s field of view before taking a screenshot.

T3: From which category are there the fewest fragments for
Schrödinger’s cat? Solution: Schrödinger’s cat is now supposed to
become the new main fragment. After doing so, the influence of the
categorical attribute in the relative weights has to be maximized
such that the amount of fragments per cluster can be compared more
easily. Then, the user can either look up the categories’ colors in the
help menu or find the category information in the detail window of
a sphere that has the rarest color in the current visualization.

T4: How many fragments of the category Cultural Arti-
facts9 are related to Erwin Schrödinger? Solution: Since this
task builds upon the previous one, the system was not reset to
the default state as for the other tasks. By doing so, we wanted
to emphasize that one could either directly traverse back in main
fragment selection by the press of a button or search once again for
the sphere that is labeled with Erwin Schrödinger. Since this step
requires a history of selected main fragments and we did not one
task to be too complex, we did not design one big task in which one
first creates a history of selected main fragments and then traverses
backwards, but separated it into two smaller tasks (namely T3 and
T4). Beforehand, we informed the user that we intentionally omit
the reset for T4. If the categorical attribute in the weights for the
relative dissimilarity has been maximized, the next step is to look
up in the help menu which color represents the searched category.
After locating the correctly colored cluster, the user then has to
count the number of spheres to answer the question.

T5: Which person out of the related fragments could
Erwin Schrödinger never have met, since they did not live at the
same time? Solution: To have the persons clustered, the user once

6https://dbpedia.org/page/Erwin Schrödinger
7https://dbpedia.org/page/Albert Einstein
8https://dbpedia.org/page/Schrödinger’s cat
9https://dbpedia.org/page/Cultural artifact



again has to set the relative weights to the categorical attribute. To
see at a first glance which persons’ lifetimes do not overlap with the
one of Erwin Schrödinger, the weights for the central dissimilarities
can be set to the time attribute. This leads to a visualization in which
spheres are closest to the center that do have an overlap in their time
period with Erwin Schrödinger. To give numerical evidence which
time periods do not overlap, the user can either open the detail
windows to check the time periods for each fragment manually or
make use of the relation details, which show up the differences
in time in exact numbers. If the number is greater than zero, the
periods did not overlap.

T6: Find a fragment that was/has taken place in one of
the countries where Erwin Schrödinger has been once. Which
country is it? Solution: Here, the user has to maximize the weight
for the geo attribute in the weights for the central dissimilarities.
After that, spheres are positioned close to the center for which
the fragments share locations with short distances with the main
fragment. Since the category does not matter in this context, any
sphere which is closest can be chosen. A look into the detail
windows of the chosen sphere and the current main fragment
then permits the conclusion which country the fragments have in
common.

T7: Find two persons out of the related fragments who
were once in the same country and lived at the same time.
Solution: The user has to set the relative weights right between the
temporal and geo attribute. This leads to a visualization in which
spheres are arranged close to each other where the corresponding
fragments have likewise a small geo and temporal dissimilarity.
Then, after looking up or remembering which color belongs to the
searched category, two spheres of the right color need to be found
that are close together. Finally, opening the relation details for
those two spheres gives evidence about their temporal and spatial
relationship. If both values are zero, then an answer is found.

All tasks were completed in this fixed order as we assumed
a progressive increase in difficulty due to the increased number
of required features participants had to use. The experimenter
intervened when help was needed. After each task, participants
filled in the Raw TLX Questionnaire [10, 11] and a discomfort
scale [7, 20], which consists of the one question “On a scale of 0
to 10, 0 being how you felt coming in, 10 is that you want to stop,
where you are now?”, while staying in the VE. Once all the tasks
have been completed, participants took the HMD off and filled
in a User Experience Questionnaire (UEQ) [16]. They also rated
all interaction methods on a scale of 0 – very disturbing to 10 –
very helpful, which was followed by a semi-structured interview to
learn more about the perceived strengths, weaknesses, and areas
for improvement regarding the application. The whole procedure
took approximately 75 min to complete and participants received an
expense allowance of 15e.

4.3 Participants

29 participants (8 female, 1 non-binary, and 20 males) between 18
and 58 years of age (M = 25.79, σ = 9.41) participated in the user
study. They were recruited on the local university campus and via
dedicated mailing lists. Prior experience with HMDs was generally
low, with 20 participants reporting to use them less frequently than
once a year and only five to use them on a more than monthly basis.

4.4 Results and Discussion

Discomfort The mean discomfort scores reported after each of
the tasks (with a possible range from 0 to 10) were all less than 1
with standard deviations of less than 1.5. Most individual scores
(N = 189) were in the range between 0 and 2, with a clear majority

(N = 156) reporting no discomfort at all. A few outliers (N = 14)
were greater than 2, where the largest score of 6 was given by a par-
ticipant after having difficulties completing the third task. However,
their discomfort score returned to 0 for all the following tasks. In the
interview three participants reported the fatigue that comes along
with the usage of the application as one of its weaknesses and that it
therefore could not be used for longer sessions. Nevertheless, these
results indicate that our system did not systematically introduce
symptoms of discomfort or sickness and that participants were there-
fore in good overall shape to rate our system in the questionnaires
as well as the final interview.

User Experience The UEQ aggregates the individual re-
sponses into six overarching scores between −3 and +3 to quantify
different facets of usability. The results for our system as well as
comparisons with the benchmark dataset of the UEQ are shown
in Fig. 3. In particular, the most positive scores were obtained
for the categories Attractiveness (M = 1.897, σ = 0.714), Stimula-
tion (M = 1.862, σ = 0.943), and Novelty (M = 2.302, σ = 0.755),
where our system received results in the highest tier (Excellent) that
marks the range of the best 10% of systems in the benchmark dataset.
The category Dependability (M = 1.664, σ = 0.849) was ranked
in the following tier (Good), indicating that 10% of systems in the
benchmark dataset scored better while 75% scored worse. The final
two categories Perspicuity (M = 1.405, σ = 0.812) and Efficiency
(M = 1.302, σ = 0.964) received an Above Average rating, with
25% of systems in the benchmark dataset scoring better and 50%
scoring worse. The high values for attractiveness, stimulation, and
novelty show that there was an overall positive impression of the
application, that it arouses excitement, and that it stands out due to
its innovation. Those findings go hand in hand with the results of
our interview. 14 participants described the application as a very
intuitive way to quickly compare data and find connections between
them, which promotes users understanding. Additionally, seven
participants described the application to be interesting, exciting and
that it arouses enthusiasm and curiosity through its innovation. The
comparably lower values for perspicuity and efficiency are also re-
flected in the interview. 13 participants mentioned issues with the
hardware and its handling since they needed some time to get used
to it, which may justify the overall lower values for perspicuity. Two
participants also noted the cost factor of the hardware as a weakness.
While none of these characteristics are attributed to our software,
they indicate general usage barriers of HMDs. We hope that future
HMDs will alleviate these issues and therefore lead to more positive
ratings of perceived perspicuity and efficiency.

Figure 3: Results of the UEQ in context with the benchmark dataset.

Ease of Learning and Use All participants were able to pick
up and use our system after watching the provided 11-minute tutorial
video. As participants were completing the tasks of the study, we
observed that the number of help requests were still relatively high
for T1 and T3 while this figure decreased considerably for the last
four tasks (see Table 1). This is particularly interesting since the later
tasks required participants to discover more complex relationships



Task T1 T2 T3 T4 T5 T6 T7
Number of Help Requests 15 5 10 1 3 1 2

Table 1: Total accumulated number of help requests per task across
all study participants.

by using more features of our system at the same time. These results
therefore indicate that participants became more proficient with our
system during the course of the study and were then able to complete
more challenging tasks without asking for further assistance.

The mean task completion time is maximal for T3 with 157.8 sec
(see Fig. 4). T4, on the other hand, had the smallest mean comple-
tion time with 89.2 sec and mean number of interaction steps with
9.2. That might be because T4 involves a similar sequence of steps
as T3 but in reverse order. The mean number of steps is maximal for
T5 with 27.3. One can solve T5 by going through the fragments in
a brute force manner, which would explain the high number of steps.
Additionally, when adjusting the weights for the dissimilarities par-
ticipants tended to test multiple weight combinations within one task
and observed its influence on the arrangement. Even though T6 and
T7 could also be solved in a brute force way, the mean number of
steps decreased to 14.1 and 14.4 respectively. While participants in
the first half of tasks tended to need fewer interaction steps while
needing more time to complete a task, the number of interaction
steps increased in the second half while the completion time became
less. That can be explained with a learning process and that the
participants got used to the system and its handling, which results in
an overall shorter task completion time.

Figure 4: Mean number of interaction steps per task and mean time
to complete a task.

Task Load The distributions of task load scores as measured
by the Raw TLX questionnaire are shown in Fig. 5. The mean
task loads ranged from M = 15.9 (T7) to M = 29.9 (T3) with stan-
dard deviations between σ = 13.4 (T2) and σ = 19.1 (T3). As
the original publication of the questionnaire does not include ab-
solute benchmark values to judge the severity of scores without a
direct comparison condition [11], we used the values provided in the
meta analyses of Grier [8] and Hertzum [12] to interpret our results.
In particular, we observed that our mean values are considerably
smaller than the averages reported in the general datasets of Grier
(M = 45.29, σ = 14.99 for the Raw TLX) and Hertzum (M = 42,
σ = 13) as well as the smaller but more specific VR dataset of
Hertzum (M = 41, σ = 15). The 85th percentiles of measured task
load scores were between 25.7 (T7) and 49.9 (T3) and therefore still
within a comparable range to the mean results in the meta analyses.
We therefore conclude that our system does not appear to impose
unreasonably high task loads on users and is therefore suitable for
exploring historical relationships comfortably. Nevertheless, while
our original intention was to design the tasks to be increasingly more
difficult as the study progressed, we could not confirm this trend by

looking at the task load scores. Contrary to our expectations, we
observed that the task loads imposed by T3 were especially high
while the final task T7 seems to have been completed with relative
ease. Considering the previously mentioned findings regarding the
decreasing number of help requests and mean task completion time,
these findings also support the assumption of a learning process and
that the participants got more familiar with the system over time.

We also observed positive correlations between task completion
time and the task load, r = 0.68, and between task completion time
and number of steps, r = 0.529, which can be considered large,
based on the threshold values of Cohen [4]. Even though it do not
imply a causality, it seems natural that a longer task completion time,
which might be a consequence of a longer thinking process or trial
by error, might lead to a higher perceived task load. The same is true
for an increased number of steps performed to complete the task.

Figure 5: Boxplots illustrating the Raw TLX values per task.

Feature Ratings The ratings of the features in the system that
should support users to solve the tasks are shown in Fig. 6. While
the overall mean value is a score of 7.8, the individual mean val-
ues per feature range from M = 5.4 (compass) to M = 8.9 (relation
details) with standard deviations between σ = 1.4 (relation details)
and σ = 2.5 (transformations). Thus, all mean scores are above the
neutral score of 5, which means that each feature was on average
considered more helpful than disturbing. Most medians range be-
tween 7 (traversing, history and screenshots) and 10 (relation details
and help menu); only the compass is an outlier with a median of 5.
Those findings prove an overall agreement that the relation details
are an especially helpful feature. This is also in line with the results
of the interview, where it was described as the most interesting and
valuable feature, which was asked to be enriched with even more
information. The high score of the help menu also makes sense
in this respect as it allows to look up feature descriptions without
having to leave the VE and the handling, which was described to be
difficult at the beginning by some users in the interview. Traversing
can also be achieved by searching and switching the fragments again,
and the history is more a reminder than an essential feature, and
screenshots “only” record what has been experienced. Summarized,
these features are rather shortcuts and memory aids, but not essen-
tial in the exploration process, which could be the reason for the
comparably lower ratings. As stated in the interview, the compass
was perceived to be too far up in the field of view, making it difficult
to see, and might be more helpful if gets positioned further down.
As a consequence, it was barely used and therefore likely resulted in
lower scores. While there are clearly more responses on the positive
than on the negative rating side, the worst individual score was a
0 for the transformation feature. This was because one participant
found the possibility to rotate the constellation around the x-axis



(roll) as annoying, although they found the other degrees of freedom
of the transformation helpful and made regular use of them during
the study. In general, the transformation had the highest standard
deviation in the response data, which is likely due to individual pref-
erences and technical affinity. Some participants preferred to move
themselves in the real world and did not make use of the transfor-
mation feature. Others tended to transform the virtual constellation
while remaining in their original position in the real world.

Figure 6: Boxplots illustrating the results of the feature rating, where
0 means that a feature was considered very disturbing, 5 that it was
neither helpful nor disturbing, and 10 that it was very helpful.

General Feedback The semi-structured interview gave us fur-
ther insights on the general applicability, possible cases, the easi-
ness of interpretation of the data representation, and the perceived
strengths and weaknesses of interacting with our system.

Regarding possible use cases 17 participants found the software
applicable to education purposes and seven were of the opinion that
it can also be used in museums. Concerning the suitability of 3D and
VR, 25 participants stated that the 3D virtual space is well suited to
explore historical data and 13 pointed out that the additional dimen-
sion offers a larger space such that more information can be captured
at a glance. In addition, 21 considered the abstract visualization in
this VR application as suitable for exploring historical data and nine
stated that it is more illustrative and comprehensible than e.g., con-
tinuous texts in books or web pages. On top of that, ten participants
claimed that interpreting the data representation was easy and 13
took one step further and even claimed it to be very easy. Those
findings confirm that our data presentation is well understandable
and reflect the results found in the UEQ evaluation. We also asked
whether some of the weighting triangle attributes (see Fig. 2) should
be changed, but 28 clearly said that the attributes are good as they are
and that they would not substitute any of them. Nevertheless, three
mentioned that the semantic attribute would also be a nice addition
to the existing ones for the relative dissimilarity. On the question
what additional features would be desirable, seven participants stated
that they would like to get more information in the relation details,
e.g., information on the amount of overlap of the time periods or
on the thematic linkage/relation between two fragments. Three had
the idea of integrating a search function to find specific fragments
more quickly which might be due to the design of the tasks in which
the participants had to find specific fragments at some points. Three
more participants mentioned filter functions as a helpful feature to

develop to define more specifically which related fragments are of
interest and thus should be displayed while others should be faded
out. Furthermore, three participants asked for more “visual pleasing
content” like different 3D objects and more pictures. Regarding the
strengths and weaknesses, five mentioned the interactivity as a good
way to experiment. Three especially mentioned that it is good to
gain an overview of the data. While two stated that the visualization
presents too much data at once, two said it should present even more
data at one glance. This discrepancy also supports the suggestion of
introducing filter functions to leave it up to the user how much data
should be displayed in order to address individual needs.

5 CONCLUSION AND FUTURE WORK

We introduced a novel interactive exploration tool for historical data
in VR, in which historical fragments are arranged based on their
temporal, geo, and semantic or categorical proximity. Together with
a set of corresponding interaction techniques, our system allows
the active user-driven exploration of historical data sets to discover
meaningful interrelationships between fragments. The results of our
user study show that the presented application arouses excitement
and stands out due to its innovation. Additionally, contrary to our
expectations, our quantitative results show that more difficult tasks,
in which more complex relationships had to be discovered, led to a
lower task load than previous tasks that were actually designed to be
easier. Thus, those findings suggest a fast learning process, which
allowed users to discover complex relationships easily after getting
used to the application. Overall, the provided features were per-
ceived to be helpful. Solely the compass was out the line since it was
hard to see and thus barely used. Although the handling of the HMD
was often classified to be complex initially, a lot of participants
stated that the 3D virtual space as well as the abstract visualization
were well suited to explore historical data and that the third dimen-
sion offers a larger space so that more information can be captured
at a glance. Furthermore, the application was considered to promote
understanding through comparing and finding connections between
data points. Only a few participants mentioned disadvantages like
the high costs and fatigue that go hand in hand when using an HMD.
Although the previously mentioned advantages seem to outweigh
the drawbacks, it makes sense to investigate how the duration of use
affects the effectiveness of the system. We hope that future technical
developments will reduce the mentioned entry barriers by providing
more accessible and comfortable HMDs.

Overall, our interviews provided several valuable recommenda-
tions for future work. In particular, more advanced filter functions
to control the data presentation as well as more advanced informa-
tion in the relation details appear promising to gain even deeper
insights into the relation between fragments. Once these improve-
ments are incorporated, future studies should also involve a more
diverse sample in terms of age and gender. Furthermore, it makes
sense to conduct comparison studies evaluating how the proposed
VR exploration method and especially the spherical arrangement
perform against other approaches, including conventional 2D tools
or alternative 3D data analysis techniques, and finally, to explore the
advantages of our system over conventional historical teaching tools
as well as the prevalent interactive 2D tools. Overall, we believe that
novel technologies like VR have the potential to systematically trans-
form historical research and teaching from the passive consumption
of texts to interactive exploration experiences that help people to
better understand complex interrelationships.
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