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Abstract:  Correspondence Analysis (CA) is used to interpret correlations between cate-
gorical variables in the areas of social science and market research. To do so, coherences of
variables are converted to a three-dimensional point cloud and plotted as several different
2D-mappings, each containing two axes. The major challenge is to correctly interpret these
plottings. Due to a missing axis, distances can easily be under- or overestimated. This can
lead to a misinterpretation and thus a misclustering of data.

To address this problem we present CAVIR, an approach for CA in Virtual Reality. It
supports users with a three-dimensional representation of the point cloud and different op-
tions to show additional information, to measure Euclidean distances, and to cluster points.
Besides, the motion parallax and a free rotation of the entire point cloud enable the CA

expert to always have a correct view of the data.

Keywords: interaction techniques, user interfaces, exploratory data analysis, correspon-

dence analysis, virtual reality, clustering

1 Introduction

Correspondence Analysis (CA) is a descriptive dimensionality reduction method of multi-
variable statistics which allows a vivid graphical representation of complex correlations of
two (or more) categorical variables as a point cloud in a (theoretically) three- (or more)
dimensional space. Similarities between variables are converted into distances on three or
more dimensions, and the positions of the variables, represented by points, are converted
into coordinates. It is presumed that there is a dependency between rows and columns
which can be explained by latent variables. Later on, the variables will be presented as a
three-dimensional point cloud. The three axes can then intuitively be interpreted as these
latent variables. CA is widely used in, i.a., social science, psychology, medicine, and, due to

its relatively convenient graphical procedure, in the area of market research [BEPWO0G].

1.1 Key Concepts of Correspondence Analysis

The key concepts of CA, which are necessary for understanding the functionality and termi-
nology of Correspondence Analysis in Virtual Reality (CAVIR), are briefly introduced. For
more information, see [Mor12], [Ben77] or [BEPWOG6]; for a short introduction, see [NGOT7].



The database consists of frequencies n;; in a contingency table K with I rows R; and J
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Each row of R is called the i* row profile of K. Each column of C is called the j* column
profile of K [Morl2]. The columns, interpreted as J axes, put up a J-dimensional space
C;, which the row profiles should be plotted in, analogously the rows. Obviously, the
J-/I-dimensionality causes problems. Plotting more than three-dimensional spaces makes
an understanding of the mapping more difficult. Due to this, the number of dimensions of
Cy and Ry is reduced to three (C?,R?) and both are integrated into one coordinate system,

whereby three conditions have to hold:

1. The more similar the profiles are, the closer the points representing the respective
row /column should lie to each other in the coordinate system. The distance is measured

using the Euclidean distance.

2. The reduction of the overall variance of K over all p;;, the so-called Total Inertia 7,

oo . . . . I J ii—T )2
should be minimal, while T"is given as T'=3;_; > %, %
- - ey

3. The additive decomposition of T should be maximal [Mor12].

After further calculations we get XYZ-coordinates for each row and column. The axes of
the integrated space can be interpreted as latent variables that explain the variance of the

conditional frequencies.

1.2 Challenges of Plotting CA Point Clouds

The reason why CA is so widely used in social science and market research lies, i.a., in the
way complex correlations between categorical variables can be intuitively interpreted using
“plotting” (cf. fig. 1(a)). With plotting, sometimes called “mapping”, the researcher inter-
prets the relative distances of the points from each other and their relative positions on the
axes. Most often, one column point (B in fig. 1(a)) makes up more or less the center of a

sub-cloud consisting of several row points (e in fig. 1(a)). In market research, the column
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Figure 1: Comparison of the CA point cloud representation in a two-axis coordinate system
with a simple 2D-mapping (layout similar to SPSS) (a) and in a three-axis coordinate system
with our VR-based approach (b).

points usually represent variations of a product, brands, or firms, and the row points repre-
sent features, ratings, or (potential) purchasers [BEPW06]. Column points will henceforth
be referred to as “trait carriers”, and row points as “traits”. Sometimes, researchers use the
plotting to cluster elements graphically.

For a complete plotting of results, a coordinate system with three axes is required. This
poses some difficulties, as a valid graphical representation may ultimately be only two dimen-
sional. Plotting software solutions (e.g. SPSS, mapwise, XGobi) therefore usually offer the
option of plotting three different mappings, where one of the three axes is omitted. Hereby,
both an XY-, an XZ- as well as a YZ-coordinate system are produced [SCB98, NGO07]. For
the interpretation of results this may cause problems because only two axes can be considered
simultaneously. This is why practitioners often choose the axes with the highest explained
variance and ignore the third one and thereby neglect important distance information. To

sum up, the main problems with non-three-dimensional plotting of a CA point cloud are:
1. Overestimation of distances
2. Underestimation of distances
3. Faulty clustering

4. Faulty interpretation

1.3 Approach

Several attempts to take account of all the three axes graphically have led to unsatisfactory
results. Especially, the graphical summary of points into clusters is impossible when distance
information is not realized validly as distances but rather as perspectives or as point char-
acteristics. In the work presented, the authors have developed CAVIR, a tool that enables

the graphical analysis and interpretation of CA point clouds in a virtual environment (VE),



providing a valid distortion-free impression of the spatial distances between points. To meet

the challenges mentioned above, the key approaches to a solution are:

1. A virtual three-dimensional model of the CA point cloud
2. Free navigation through the VE

3. Arbitrary rotation opportunities of the point cloud to provide a valid impression of the

spatial distances between points
4. Diverse options to display labels
5. Unhindered scaling of axes
6. Measuring of distances between points

7. Clustering of points

The rest of this paper is structured as follows: section 2 presents relevant related work. In
section 3 we describe the technical realization of our approach. Section 4 covers the required
handling of two different Virtual Reality displays. Finally, we give a brief conclusion and an

outlook on future work in section 5.

2 Related Work

Van Dam et al. already stated that the gap between the rate of data generation and the
capacities to analyze this data is widening. As a possible solution they propose Immersive
Virtual Reality (IVR) technology, which combines interactive visualization with immersive
sensation [vDFLT00].

Arns et al. integrated 3D-scatterplots into a CAVE-like VE [ACNC99]. The authors
performed a user study which contrasted their methods with the well-known XGobi sys-
tem [SCB98|. Interestingly, users performed better with the VE but felt more comfortable
when working with the classical desktop-based tool.

Another approach that uses a “grand tour” view embedded in a VE to show raw data
as well as clustering results is presented by Yang [Yan99]. The same author specifically
addresses the problem of overdrawing, and presents a solution based on direct volume visu-
alization, namely a splatting approach for scatterplots and similar views [Yan03].

Very little research has yet been done on alternative ways of plotting the point cloud of a
CA. [BEPWO06] gives an introduction in the method itself and its mathematical procedures,
pointing out that if more than two axes are needed to achieve a satisfactory explained
variance, the researcher has to decide which two are the most important. These should be
plotted. However, the authors admit that a two-axes-plotting is never possible without a
loss of information.

Whitlark and Smith propose chi-square residuals to measure item distances (so-called

attribute-brand relationships) and to thus escape the dimensionality problem. Previously



they had stated: “Relying on a two-dimensional map may be risky. In our experience, it is
rare to see a two-dimensional map tell a complete or even an accurate story.” [WSO01].

The statistical software package R, as described by [NGO7|, provides a non-immersive
three-dimensional display of CA point clouds, which alleviates (but does not totally solve)
the problem of perceptual distortion. Helpful analytical tools, such as brushing, labeling,
distance measuring, and clustering, are not included in R.

The first application of Virtual Reality (VR) on CA was done by [MMG™'03]. In the
context of a dermatological study, they plotted point clouds along three dimensions of skin
characteristics using a stereoscopic display. Point clustering was ex ante implemented by
a hierarchical cluster analysis [MMGT03]. However, we want to enable the researcher to
cluster the points manually within the model. In contrast to existing CA analysing and
visualizing tools, the approach presented here proposes an immersive 3D-display providing
the researcher with a distortion-free impression of spatial distances as well as with new

interaction methods for valid interpretations and clustering.

3 Technical Realization

In this section we explain the set-up of our approach to enable CA.

CA is a complex process divided into several substeps, but in this paper we focus on
one of the last steps, namely clustering and the supportive techniques. Due to the fact that
the approach should be embedded into the workflow of CA experts, the format of our input
and output files is determined by the notation of SPSS [ASDVV09], one of the standard
programs in the field of CA. This enables a quick and uncomplicated switch between both
working areas.

Our initial situation is an input file containing a list of data points described by three

attributes
e one character cMemshp classifying the data point,
e one string sDesc giving a concrete point label and
e three numerical values defining the position of a point P in the 3D space.

The data points are divided into two sets, the traits A_Trait and the trait carriers B_Carrier.
The data points’ membership of one of these two sets is encoded in cMemshp. A unique natu-
ral number indicates the inclusion in A_Trait; unique small letters, accordingly, in B_Carrier.
To be able to cluster the data points meaningfully, users need to be able to easily distinguish
both sets during exploration in the VE. For this purpose, different shapes, analogously to
the representations in standard 2D-CA-programs, are used: a sphere is chosen for the traits
and a box for the trait carriers (cf. fig. 1(b)). With this similarity, irritations on the user side
will be avoided. Then, the representations are shown at the respective point P. A Cartesian

coordinate system used as a reference frame (see 3.3) completes the basic set-up.



Due to the fact that the point cloud is relatively small compared to the complete VE, we
added a tiled reference plane as a “ground floor” to give some spatial cues. This supports the
user during exploration of the scene via navigation [BKLP04]. Here, we offer two techniques:
a pointing-metaphor for free travel through the VE and a trackball metaphor for free rotation

of the point cloud.

3.1 Interaction

In addition to navigation, different interaction techniques are offered, based on IntenSe-
lect [dHKPO05] and simple ray intersection calculations. We scale the represented point
clouds to enable an accurate selection with both techniques of a single point, even in a tight
clouds. To give some additional help by all selection tasks, the position of the input device
is displayed by either a beam or a small sphere, as will be explained in section 4.

To enable an intuitive and well-defined handling, each technique provided is bound to one
application mode. A menu hierarchy is used to for unhindered switching between the modes
and their submodes during runtime. We choose a so-called pie menu [CHWSS88]. Callahan
et al. compared pie menus to linear menus and discovered, that the circular arrangement of
the entries around the menu center reduces the target seek-time and lowers the error rate.
Thus, such a circular menu enables the user to work more efficiently.

Besides the layout, we try to achieve an effective working by using just a small menu
hierarchy. The first menu consist of four entries, showing the four available modes, presented
in the following. Each entry has a submenu for mode specific tasks. Only in urgent cases
those entries have another submenus.

To always indicate which mode is currently active, we show a tooltip that provides all the
necessary information. Additionally, a color coding of the floor tile borders and the scene
background is used. These colors are also linked to the respective circular menu’s entries to
quickly ensure a correct handling.

Users should always start with an exploration of the point cloud, so no application mode
is chosen in the beginning. Besides the different shapes, we add a color coding for an easy
and quick identification of the points’ membership. Traits are visualized in red and trait

carriers in green. This color association is reused as often as possible in the modes.

3.2 Labeling

Besides the general set-up, additional information is required for an effective clustering pro-
cess. The challenge is to position this information in an appropriate way. Superimpositions
of the point cloud have to be avoided and quick access to the information has to be ensured.
Annotations are a standard technique for solving these problems. Besides readability, more
important aspects concerning the layout have to be taken into account. Those are described
in [AHSO05].

We use textual annotations, as shown in figure 2(a), that are based on the annotation
library IDEA [PHW™10], which can be faded in or out for each point individually in the



“label” mode. Our layout refers to the column-wise “Flush-Left-Right Layout” from [AHSO05].
We can strictly separate the scene and the labels to always enable an uncovered view of the
pure data. In contrast to Ali et al., we use segmented connection lines between the anchor
point of P and the respective label. To ensure a clear allocation, the anchor point coordi-
nates are exactly the same as those of P. Due to both definitions, we reduce the space used
for the labels and show a more compact setting. Nevertheless, it becomes difficult to find one
particular label while displaying a huge amount of labels. Users have to trace the connection
line from a data point to its label or they have to read the labels to find out whether they
belong to a trait or a trait carrier. For simplification, we use the red-green coloring here,
not only for the points but also for the labels.

We provide three label types, given in the initial input file, which are used to support

the user during clustering.
1. The unique id cMemshp allows an explicit and a fast identification of data points.

2. Sometimes it may be useful to know what information a point represents, i.e. which
product or key features it stands for. This information is contained in the attribute

sDesc.

3. The explicit point position is also helpful during clustering to estimate point distances

without using the distance mode, or to find outliers.

Users can switch between those label types via different entries in the circular menu.

3.3 Coordinate System

To quickly understand the distribution of the point cloud, we display a Cartesian coordinate
system with labeled axes. Due to this, the origin of the point cloud can be clearly identified
and this allows a first, rough classification of the distribution. To allow extraction of more
information, the length of the individual positive and negative axis intercepts can be set to

one of three predefined values using the mode “coordinate system”.

e To quickly understand the spatial distribution, the axes can be adapted to the max-
imal absolute values of the point cloud extended by a user specified value. Short
axes imply small point distances, while large axes indicates an extensive distribution

or outliers.

e In CA, points are often deemed to be outliers if they have at least one absolute value
greater than a maximal bound. According to the concrete application, those values may
be treated differently, e.g. they may be clamped to a special value. In our approach a

maximal bound can be predefined by the user to enable the identification of outliers.

e In addition to the maximal bound, a minimal bound can be set. This value will be

predefined by the user and used to quickly identify points in or over a special bound.
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Figure 2: (a) The label layout consists of two columns next to the point cloud and different
labels are offered, which can be selected individually for each data point. (b) A measured
distance is visualized via a connecting line and a centered text label. (¢) One example to

divide a given point cloud into four clusters, currently adding points to cluster 2.

Besides scaling the axes, users can add an object-oriented bounding box to identify inliers

and outliers more clearly.

3.4 Distance Measurement

The main aim of our approach is to facilitate clustering and to reduce errors during this
process. One criterion used to find the correct cluster for a data point is that of comparing
the distances between several points. This can be done in the mode “distance”. Users are
asked to select two different data points P; and P;, between which the Euclidean distance
will be computed. The Euclidean distance itself is calculated based on the exact coordinates
given in the input file.

Figure 2(b) illustrates the distance visualization: a connection line between both selected
points, and a centered label with the computed distance. To maximize the clarity of which
points are selected, all points are inked in gray in the beginning. After selecting a data point,
it is recolored to red or green according to the set it belongs to.

Points can be deselected and inked in gray by the user or the system. Users can select a
marked point again to deselect it, or just choose a third point P;. In this case, the system
will automatically deselect the first two points P; and P;. Owing to this, just one distance

is shown at the same time.

3.5 Clustering

In the “clustering” mode, the whole interaction is managed by the circular submenu, shown

in figure 2(c). Thereby, the compliance of two rules is always ensured:
R1: The total number of clusters is greater than zero and less or equal to | B-carrier].
R2: In each cluster there has to be at least one trait carrier.

Three interaction types are offered in this mode:



a) Users can add and delete clusters, complying with R1. For each cluster an individual

menu entry is provided, containing a radio button.

b) Via brushing [WR05], points can be linked to an active cluster according to R2 or they

can be removed from any cluster.

¢) The clustering can be stored to the filesystem. The format of the output file is deter-
mined as dummy codes, to enable the analyst to go on working in her used surroundings

after using the VE to cluster the point cloud.

If the user selects a cluster entry in the circular menu, linking of data points to the according
cluster is activated. This is shown by selection of the respective radio button and by the
tooltip. Adding points to the cluster is done by brushing: first, the points are focused
via IntenSelect [{HKPO05] and then added by clicking. To be able to comply to R2, the
first point added to a new cluster has to be a trait carrier. We again use colors to show
the set membership. All points that are not yet linked to a cluster are gray. Each cluster
has a unique color, which is used for the cluster entry in the circular menu and the linked
points. Additionally, it is used for the representation of the input device to give the user
some additional help besides the tooltip and the radio buttons. If the user adds a point
to a wrong cluster, the circular menu provides an entry for deleting individual points from
clusters. With this option, the points are recolored gray. If a single trait carrier in a cluster
is deselected, all points of this cluster are deselected, too. With this automatic deselection,

R2 is always ensured to hold.

4 Challenges of Different VR Displays

The aim of CAVIR is to accelerate the process of interpreting and clustering and thereby
reduce the potential clustering errors described in section 1. [ACNC99] already showed in
a user study that VEs support this requirement, because a third dimension is available.
Users are able to make better decisions, due to a better and not misleading view of the
data [WSO01].

Our approach should be available for two different display system classes. On the one
hand, we want to use a five-sided CAVE-like environment to enable a collaboration with
several people during the cluster process and the possibility to freely walk around the point
cloud. On the other hand, we want to provide a semi-immersive low-cost and quick possibility
to cluster the point cloud in the office in order to embed its use into the normal workflow.
Therefore, we decided to use a 3D monitor, as shown in 3(a).

The low-cost solution has multiple advantages. First, it is easy to handle for novice users,
who are often not familiar with VR techniques. Second, all the input devices known from
standard desktop systems can be used and thus the interaction can be maintained similarly
to the usual work environment. Due to this, the learning phase before users can handle the

application correctly is shortened. Another advantage is that we do not need head-tracking.
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Figure 3: Using CAVIR on a 3D monitor without head-tracking (a) requires a technique to

adapt the input device representation depth, as shown in the schematic drawing (b).

The motion parallax in combination with the stereo projection is enough to have the required
correct view of the data. Nevertheless, this causes a difficulty. While we use a beam pointer
in the CAVE-like environment for input device representation, the beam seems to directly
penetrate the user’s head between her eyes at the low-cost device. This is disconcerting and
leads to a headache after a short time of usage.

Our solution is a depth-adaption into the viewing direction of the input device representa-
tion, influenced by the focused part of the scene. This is schematically shown in figure 3(b).
Normally, the input device representation would be shown in distance d behind the near
plane. Now, we figure out which data point is in the focus of our IntenSelect cone and we
determine its exact position. Afterwards, we translate the representation in viewing direction
to the focused data point. This distance dqqqp¢ is computed by taking the difference between
the old position and the data point position and subtracting a small offset. In addition to
choosing a sphere representation rather than of the beam, our approach avoids any unwell
feeling.

During movements of the input device, this technique leads to small jumps of the sphere
if the focused data points lie in different depths. In a pre-test, this did not turn out to
be disturbing. If no data point is focused, the depth is not adapted and the circular menu

entries can be selected without problems.

5 Discussion and Future Work

We have presented a VR-based technique to ease valid interpretation and to realize clustering
- one of the last steps in correspondence analysis (CA). The standard CA programs mostly
provide 2D-views of the data, leading easily to misinterpretations and misclustering. None

offers a clustering option. In the virtual environment (VE) we have the advantage of showing



the data three-dimensionally as a point cloud in a Cartesian coordinate system. Thus, a
correct view is always provided and perceptual distortion avoided, which accelerates the
clustering process and at the same time reduces the risk of misinterpretations and invalid
clustering. Different navigation and interaction techniques are used to support the clustering,
which is done by linking points to certain clusters via brushing.

During the implementation process we had close contact to one CA expert, who pretested
all features. However, we plan to evaluate our approach in a user study to identify issues
which need to be addressed for improvement, especially concerning usability. Besides, more
features will be added, such as techniques to identify and handle outliers correctly, according
to the concrete task; a way of dealing with data points, which should be assigned to at least
two different clusters; and a bounding volume for each cluster in order to have an additional

membership cue on top of colors.
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