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Figure 1: Brain region in coronal direction from a vervet monkey (3072x3072x1 vectors). (a) Fiber orientation color code aligned to section.
(b) Direct vector visualization. (c) Spherical harmonics representation at highest resolution (block size 48x48x1). (d) Combined visualization
of multiple LODs. (e) Combined visualization of multiple LODs and vectors.

Abstract
3D-Polarized Light Imaging (3D-PLI) provides data that enables an exploration of brain fibers at very high resolution. However,
the visualization poses several challenges. Beside the huge data set sizes, users have to visually perceive the pure amount
of information which might be, among other aspects, inhibited for inner structures because of occlusion by outer layers of
the brain. We propose a clustering of fiber directions by means of spherical harmonics using a level-of-detail structure by
which the user can interactively choose a clustering degree according to the zoom level or details required. Furthermore, the
clustering method can be used for the automatic grouping of similar spherical harmonics automatically into one representative.
An optional overlay with a direct vector visualization of the 3D-PLI data provides a better anatomical context.

CCS Concepts
•Human-centered computing → Visualization techniques; Scientific visualization;

1. Introduction

In the last decades, research on brain nerve fibers was mainly driven
by diffusion-weighted Magnetic Resonance Imaging (dMRI) tech-
niques such as Diffusion Tensor Imaging (DTI) or High Angular
Resolution Diffusion Imaging (HARDI). In contrast, 3D-Polarized
Light Imaging (3D-PLI) is a rather new, microscopic technique
that allows for fiber exploration at much higher resolution in post-
mortem brain tissue [AAG∗11]. So far, there is no well-established
visualization approach for 3D-PLI data. To this end, we propose a
visualization by means of spherical harmonics at different levels of
resolution that can be interactively chosen (see Figure 1).

The fundamental 3D-PLI data structure is a vector field indi-
cating individual nerve fiber orientations. The similarity of PLI

data to dMRI (though at a complementary resolution) is an ap-
pealing link between both techniques. Vilanova et al. [VZKL06]
give an overview of visualization approaches for DTI data. Color
coding the direction of a nerve fiber is a common technique (e.g.,
[JFM∗04]). As each voxel is colored according to the direction of
the underlying data this is a dense representation where a section
view or the use of cutting planes is required to receive more in-
formation than a plain surface. Garyfallidis et al. [GBA∗14] pre-
sented another approach that traces fiber bundles along their direc-
tion which results in a line representation that can be clustered in
a further step to generate more structure within the data. Further-
more, interaction widgets allow for selective visualization of fiber
bundles passing through a certain region of interest.
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Beyond DTI, which describes fiber distributions by means of a
simple tensor, HARDI describes fiber distributions by means of
orientation distribution functions (ODFs). ODFs integrate more
detailed information per voxel than a single direction vector or
a second-order tensor. Therefore, glyph-based representations of
ODFs are an effective way for comprehensive visualization of high-
resolution data. For example, Kindlmann [Kin04] presented su-
perquadrics changing their shape based on eigenvalues and Hess
et al. [HMH∗06] employed spherical harmonics in order to repre-
sent an ODF of the fiber distribution in a single voxel. However,
representing the data with one glyph per voxel eventually results
in an incomprehensible visualization as it contains too much in-
formation that cannot be simultaneously perceived anymore due to
visual clutter. As shown by Abbasloo et al. [AWHS16], this chal-
lenge can be met by employing different visualization techniques
for an overview (volume rendered brain anatomy) down to a de-
tailed view with glyphs.

The above-stated demands, such as dense information process-
ing and visual clutter handling at low zoom levels, get even more
significant for 3D-PLI data as the data resolution is much higher
than for dMRI. Schubert et al. [SGP∗16] provide different glyph
types (e.g., lines, cuboids, cylinders) to visualize 3D orientation
vector arrays while Axer et al. [ASG∗16] employed spherical har-
monics that integrate the information of the vector data. Both ap-
proaches use a color code representing the spatial direction. In com-
parison to Schubert et al., Axer et al. tackle visual clutter providing
spherical harmonics at different levels of detail (LODs) by varying
crop size and thereby the number of underlying vectors per ODF.
The drawback of this approach is the lack of interactivity during
adjustments. The spherical harmonics at different LODs are calcu-
lated on the original data, hence, the complete data set has to be
reloaded to visualize a different level which inhibits the interactive
visual analysis process of the exploration of fiber structures.

In this paper, we present an approach that enables the required
interactive real-time modification of the resolution. It has been de-
veloped in close collaboration with neuroscience domain experts.
In a pre-calculation step, the ODFs required for the spherical har-
monics are calculated at full resolution. We then compute an octree
enabling the fast visualization of different LOD representations.
As the main limitation of our approach is the number of spherical
harmonics that can be visualized simultaneously, we furthermore
present an automatic, similarity-based clustering of the spherical
harmonics that also supports to identify heterogeneous regions.

2. 3D-PLI Data

Before going into detail about deriving spherical harmonics and the
visualization, this section provides an overview of the 3D-PLI tech-
nique and how the two data sets shown in the figures were created.

In 3D-PLI, the measured light intensities transmitted through the
brain section sandwiched in between polarizing filters follow sinu-
soidal courses characterized by amplitude and phase depending on
the spatial orientations of fiber axes contained in each voxel of tis-
sue. These sinusoidal courses were used to derive two angles (φi
and αi) for each voxel i describing the fiber’s axis in space with re-
spect to the reference frame of the polarizers: the direction angle φi,

(a) (b) (c)
Figure 2: (a) The unit hemisphere is binned into 32 longitudes
times 16 latitudes = 512 bins, each of them represented by a bin
vector. (b) Vector visualization of a 16x16x4 data block. (c) Radial
histogram of this block.

which represents the azimuth of the projection of the principal fiber
axis into the sectioning plane, and the inclination angle αi, which is
the angle of elevation between the principal fiber axis and the sec-
tioning plane. Direction angle and inclination angle constitute the
spherical coordinates of a unit vector, building a fiber orientation
map (FOM) considering all voxels of the scanned brain section.

For the data used in this paper, 3D-PLI was applied to 60µm
thick coronal sections through a formalin-fixed vervet monkey and
a human brain, both acquired and prepared in accordance with the
responsible animal research committee and ethics committee. Two
polarimetric setups (providing pixel sizes of 1.3× 1.3 µm2 and
64×64 µm2, resp.) were employed to carry out birefringence mea-
surements and to give contrast to the orientation of individual nerve
fibers and their tracts as described in [AGK∗11].

3. Orientation Distribution Functions

ODFs describe the continuous spherical density of fiber orienta-
tions that can be approximated from the FOM. To this end, a radial
histogram is created out of the FOM data (see Figure 2) which is
then fitted to a spherical harmonics expansion.

In order to obtain a radial histogram, the FOM is divided into
equally sized cubic blocks where the size is related to the actual size
of the tissue represented by the vectors and not the number of vec-
tors itself. Comparable to the approach by Axer et al. [ASG∗16],
the orientations within one block are quantized by mapping them
on a defined number of bins of a unit hemisphere (see Figure 2a).
The best match of a vector to a bin is identified by determining the
maximum dot product between a 3D-PLI vector and a bin vector.
The resulting radial histogram is a discrete estimation of the ori-
entation probability density, i.e., the number of vectors in each bin
related to its corresponding dihedral angle (see Figure 2c).

Spherical harmonics that form a set of orthonormal basis func-
tions on the unit sphere (longitude θ = π

2 −α, colatitude φ) can
be approximated based on the radial histogram. A basis function
Y m

l (θ,φ) with degree l and order m is defined as

Y m
l (θ,φ) =


√

2Km
l cos(mφ)Pm

l (cos(θ)), m > 0√
2Km

l sin(−mφ)P−m
l (cos(θ)), m < 0

K0
l P0

l (cos(θ)), m = 0

(1)

with the associated Legendre polynomials Pm
l and the scaling factor
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Km
l =

√
2l +1

4π

(l−|m|)!
(l + |m|)! . (2)

As only an infinite number of basis functions Y m
l (θ,φ) and corre-

sponding coefficients cm
l would lead to an exact reconstruction of

a spherical harmonic expansion, the spherical function f can be
approximated by bounding the degree to L̄ such that

f̃ (θ,φ) =
L̄

∑
l=0

l

∑
m=−l

cm
l ·Y

m
l (θ,φ). (3)

The coefficients cm
l of f are defined as

cm
l =

∫ 2π

0

∫ π

0
f (θ,φ)Y m

l (θ,φ)sin(θ)dφdθ. (4)

With N being the number of bins in the radial histogram, cm
l can be

discretized to the Monte Carlo estimator for spherical functions

cm
l ≈

4π

N

N

∑
n=0

fnY m
l (θn,φn). (5)

Furthermore, with the truncation to L̄, Y m
l can be expressed as rect-

angular matrix Ȳ where the rows represent the bins and the columns
the spherical harmonics coefficients up to L̄. With the transposed
matrix Ȳ T and h being a flattened 1D bin vector representation of
the radial histogram that we aim to approximate the spherical har-
monics expansion to, the coefficients can be rewritten in linear form

c≈ 4π

N
Ȳ T h. (6)

Based on this, we seek a set of coefficients c that best approximates
the ODF. However, due to the discretization of the radial histogram
and limiting the degree of the spherical harmonics to L̄, an exact
reconstruction is not possible such that Equation 3 can be seen as
a linear least squares problem minimizing the 2-norm expression
||Y c−h||2. For reasons of numerical stability, we decided to apply a
singular value decomposition. Thus, the final equation to be solved
to receive the coefficients for the spherical harmonics is

c =VȲ Σ
−1
Ȳ UT

Ȳ h. (7)

These coefficients describe the individual contribution of the spher-
ical harmonics assembling the ODF. The entire set of ODFs of a
data set are called an ODF map.

4. Visualization

3D-PLI is visualized in our approach based on two methods: di-
rect vector field visualization and rendering of spherical harmonics
based on the pre-calculation presented in Section 3. A direct vector
visualization of the FOM is provided an as basic overview visual-
ization modality (see Figure 1b) which color codes the vector di-
rection in an RGB color scheme (red: left to right; green: anterior
to posterior; blue: inferior to superior, see Figure 1a). On the one
hand, it is hard to perceive individual orientations in the pile or—
depending on the amount and observer distance—even the vectors
itself (see Figure 1b). On the other hand, it is a fast visualization
technique as only separate lines have to be rendered.

On top of that, we provide a second visualization method by
means of spherical harmonics that integrates information of mul-
tiple vectors in order to avoid visual clutter for large amounts of
data and emphasizes the fiber directions. The most natural way to
visualize large vector arrays whose resolution exceeds screen reso-
lution is their coarsening into cubic crops of arbitrary size and the
integration of their directional distribution into a single glyph rep-
resented by the ODF. This has the benefit that directional informa-
tion is preserved during visualization independent of the selected
LOD. To approximate the coefficients of the spherical harmonics,
first the angular location is determined by scaling the point for each
spherical harmonic along the normal based on the corresponding
ODF. Second, for constructing the spherical harmonic, points are
sampled equally for θ ∈ [0,2π) and φ ∈ [0,π/2) on the unit hemi-
sphere. Third, the sum of the spherical harmonics basis functions at
each point (θ,φ) are weighted by the coefficients (see Equation 3).
The sampling of the coefficients to obtain the points that define the
spherical harmonic is realized in CUDA. These points are then used
to create a triangle mesh for the actual visualization and for reasons
of consistency, the applied color scheme is equal to the direct vector
visualization. The spherical harmonics visualization can be inter-
laced or toggled with the direct vector visualization (see Figure 1)
and 3D navigation is provided in an interactive manner.

4.1. Level-of-Detail Structure

With the approach presented above, we obtain a set of spherical
harmonics coefficients as representations for a fixed cubic block
size of vectors. As shown by Axer et al. [ASG∗16], the size of
the blocks can already be arbitrarily increased, which results in a
less visual cluttered view onto the data as way less ODFs are pre-
sented. However, this has not yet been designed for an interactive
change between these resolutions and the complete data set has to
be reloaded each time another level is desired. Therefore, we in-
troduce an interactive LOD approach that addresses this drawback
and allows for visualization of multiple levels simultaneously (see
Figure 1d).

When computing the ODFs for different block resolutions indi-
vidually, the highest computational load stems from the singular
value decomposition (Equation 7). Instead, the coefficients can be
determined by component-wise summation of the coefficients of
the higher LODs. Hence, we derive from Equation 3:

f̃ (θ,φ)+ g̃(θ,φ) =
L̄

∑
l=0

l

∑
m=−l

( f m
l +gm

l ) ·Y
m
l (θ,φ). (8)

Thus, the complete computation steps are only applied for the high-
est resolution of the data set and the spherical harmonics coeffi-
cients for each block are stored as leafs in an octree. The rest of the
tree is constructed bottom-up by adding the coefficients of the child
nodes to the parents node for each branch until the root is reached.

In comparison to Axer et al.’s work, our tree structure limits the
block size to be always divided in half for each level. However, as
the user can interactively select which LOD to visualize, this draw-
back is less relevant as the user can easily change to a higher reso-
lution and compare the levels to determine if relevant information
might get lost due to level switch.
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(a) (b) (c)
Figure 3: (a) Spherical harmonics at highest resolution. (b) Auto-
matic clustering of similar regions. (c) Comparing view with mul-
tiple overlayed LODs.

4.2. Similarity Clustering

A further improvement of the presented approach is a local, au-
tomatic clustering of spherical harmonics (see Figure 3b). Visual
clutter is reduced as redundant information is removed and the user
is guided to more diverse regions with higher varieties in the fiber
structure. Furthermore, this enables the visualization of larger re-
gions of interest as the limitation of the graphics memory restricts
the number of triangles that can be stored for each representative.

For the clustering, we employ the information in the octree. If
all child nodes hold coefficients which are similar to the parent’s
coefficients, they are visualized by the parent’s spherical harmonics
representation and, thus, clustered. The similarity is specified by
the L2-difference between the parent and its children [KFR03]; the
threshold that defines whether the difference is low enough to be
considered for clustering is interactively defined by the user.

5. Results and Discussion

Our presented solution for visualizing 3D-PLI data through spher-
ical harmonics is designed to work on consumer PCs as the data
are processed block-wise. Hence, in comparison to Axer et al.’s
approach [ASG∗16], access to a supercomputer is not mandatory.
However, as the implementation of the coefficient calculation and
the visualization are realized in CUDA, the available GPU comput-
ing power and memory are limiting factors. Note that it is possible
to store computed coefficients and, thus, hardware resources with
better performance can be employed for preprocessing without re-
quiring access during visual analysis of the resulting data.

For a radial histogram (90x50 bins) covering 180x180x1 FOM
vectors, a block size of 4x4x1, and a maximum spherical harmonics
degree of L̄ = 12, 2025 ODFs can be calculated in about 9.3 sec-
onds on an NVIDIA GeForce 940M while for an NVIDIA GeForce
980 Ti the calculation is reduced to 2.7 seconds. Various parame-
ters can be adjusted. For the pre-calculation these are: number of
bins for the radial histogram, block size, and maximum degree for
the spherical harmonics. For the visualization, sample resolution
of the spherical harmonics and size of the displayed region can be
interactively adjusted.

Furthermore, we facilitate an interactive change of the LOD to
examine the data at different resolutions and guide the user’s atten-
tion to regions with high variability by means of an optional, au-
tomatic clustering. Examining the data at very low LOD should be
done cautiously. While the example of Figure 4a shows no obvious

(a) (b)

Figure 4: Relevance of LODs for regions in a human brain: (a)
reduction in resolution shows no significant loss in information;
(b) fiber information of the tapetum vanishes (red-circled area).

loss of information, in the second example (Figure 4b) the informa-
tion of the fibers of the tapetum (part of the corpus callosum) are
assimilated by surrounding spherical harmonics.

Another benefit of real-time interaction is shown in Figure 1e.
By rotating the data set, the user can better perceive the orientation
of spherical harmonics. Thus, in comparison to a top view, spheri-
cal harmonics pointing out of slice are easily detectable.

6. Conclusion and Future Work

In this paper, we have presented an approach for visualizing 3D-
PLI data. By means of spherical harmonics, multiple voxels are
combined into one representation to reduce visual clutter. Interac-
tive adjustment of the presented LOD allows for faster analysis of
the data as it was possible before. Furthermore, we see great poten-
tial in applying this clustering techniques also to dMRI modalities.

For future work, we plan to enhance our prototype by linking the
fiber to an anatomy visualization to provide better spatial context.
Furthermore, we want to optimize the approximation by spherical
harmonics also for a supercomputer to speed up the integration of
new data sets. This should comprise a fast transfer of interactively
selected regions onto a local machine for visualization purposes.
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