
Visualizing Performance Data

With Respect to the Simulated Geometry

Tom Vierjahn1,3, Torsten W. Kuhlen1,3,
Matthias S. Müller2,3, and Bernd Hentschel1,3

1 Visual Computing Institute, RWTH Aachen University, Germany
2 Chair for High-Performance Computing, RWTH Aachen University, Germany

3 JARA – High-Performance Computing, Germany

(a) Zeus-Mp/2 (b) Sweep3d

Fig. 1: Visualizing performance in an hpc system’s network topology may reveal
the underlying geometry in small cases (a), but obscures it in larger cases (b).

Abstract. Understanding the performance behaviour of high-perfor-
mance computing (hpc) applications based on performance profiles is
a challenging task. Phenomena in the performance behaviour can stem
from the hpc system itself, from the application’s code, but also from the
simulation domain. In order to analyse the latter phenomena, we pro-
pose a system that visualizes profile-based performance data in its spatial
context in the simulation domain, i.e., on the geometry processed by the
application. It thus helps hpc experts and simulation experts under-
stand the performance data better. Furthermore, it reduces the initially
large search space by automatically labelling those parts of the data that
reveal variation in performance and thus require detailed analysis.

1 Introduction

Optimizing an application to use the compute power e�ciently that is o↵ered
by a modern high-performance computing (hpc) system requires powerful tools
for performance analysis. Such tools ought to reveal an application’s perfor-
mance behaviour clearly. Visualizing performance data with respect to the hpc

system’s network topology (Fig. 1) helps analysts understand an application’s
performance behaviour. However, it does not clearly reveal performance phe-
nomena in the simulation domain that are for instance caused by sub-optimal
domain decompositions.

In simple cases, an analyst might be able to infer the simulation domain
from the visualization in the hpc system’s network domain: in case of Fig. 1(a)
a sphere, cut in half and then mapped to the hpc system’s nodes. For larger cases
the simulation domain can hardly be inferred: in case of Fig. 1(b) a 2d gradient,
cut several times. Thus, in order to provide complete insight into an application’s
performance behaviour, analysis tools ought to visualize the available data also
with respect to the system domain. Only few tools take this into account, and
if they do they restrict it, e.g., to regular grids.

Therefore, we propose a tool that facilitates visualizing performance data in
its spatial context on arbitrary geometry in the simulation domain, e.g., triangle
meshes, provided there is a mapping from the computing resources to the ge-
ometry. In order to help the analyst find meaningful views on the data, the tool
automatically identifies and suggests views that reveal variation in performance.

2 Related Work

Isaacs et al. give an overview of the state of the art in performance visualiza-
tion [3]. They list only few techniques considering the simulation domain. Schulz
et al. stress the importance of taking the simulation domain into account during
performance analysis [4]. Wylie and Geimer use Cartesian grids [5] in the Cube
performance profile browser [2] in order to visualize performance with respect
to the simulation domain.

We propose a tool that is similar in spirit to the Cube performance profile
browser but it enables visualizing performance data on arbitrary geometry.

3 Nomenclature: Performance Profiles, Severity Views

Profiling is a common technique in performance analysis. A profile summarizes
performance data over an application’s complete run-time. Data is collected
according to performance metrics m 2 M , e.g., execution time, for the call paths
c 2 C of the application’s functions executed on the system resources s 2 S , i.e.,
processes or threads. During analysis, by selecting a pair of metric m and call
path c, analysts specify a severity view

vm,c : S 7A R ,

with vm,c(s) yielding the severity of, e.g., execution time, for a user-selected pair
(m, c) on a system resource s.

Instead of analysing performance on a thread or process level, this work
focuses on the individual mpi ranks ri 2 S

MPI

that each execute a set Sri ✓
S of processes or threads, so that S =

S
ri2SMPI

Sri and 8i8j 6=iSri \ Srj = ;.

Therefore, the severities measured for the individual processes or threads need
to be aggregated in order to compute the severity for the i-th mpi rank ri:P

s2Sri
vm,c(s). With a slight abuse of notation we use the shorthand

vm,c(ri) .

.=
X

s2Sri
vm,c(s) ,

with vm,c(ri) denoting the severity of, e.g., execution time, for a user-selected
pair (m, c) on the i-th mpi rank ri. Since we require the performance data to
include a mapping from the mpi ranks to the individual parts of the geometry
in the simulation domain, vm,c(ri) also denotes the severity for the part of the
geometry that is computed by the i-th mpi rank ri.

4 Detecting Variation in the Data

Visualizing the severity vm,c(ri) for the individual mpi ranks may provide valu-
able insight for finding root causes of performance bottlenecks. However, such
a detailed visualization is only sensible if there is a certain amount of variation
in performance across the mpi ranks. Otherwise, a single number representing
the accumulated severity

P
ri2SMPI

vm,c(ri) of the selected performance metric
would do.

In order to identify large-variation severity views, our system uses the vari-
ation coe�cient

qm,c =
�m,c

µm,c

as an indicator. Here, µm,c denotes the mean severity of the mpi ranks in the
selected severity view vm,c, and �m,c denotes the standard deviation, with

µm,c =

P
ri2SMPI

vm,c(ri)

|S
MPI

| and �m,c =

P
ri2SMPI

�
vm,c(ri)� µm,c

�
2

|S
MPI

| .

According to the feedback provided by hpc experts, a threshold of ⌧q = 0.01
turned out to be sensible for detecting severity views of interest with qm,c � ⌧q.
However, ⌧q can be adjusted by the analyst.

5 Interactive Visualizations

The proposed system provides several visualizations that have been developed
according to requirements posed by hpc experts. These facilitate interactive
analysis of profile-based performance data in a top-down fashion in order to find
and analyse severity views of interest that reveal performance phenomena.

Fig. 2: Proposed user interface: the severity of “Time/Execution” in “cps02 ” is
visualized on the geometry (top right). The data from the table (lower left) is
visualized by parallel coordinates (lower right). Mpi ranks 1 and 3 are selected.

5.1 Performance Metrics and Call-Path Tree Widgets

The hierarchies of the metrics and call paths are visualized in tree widgets on
the left of the user interface (Fig. 2). For each entry the total severity including
the descendants (column “Severity”) and the net severity of only the entry itself
(column “Self”) are printed. Both widgets can be sorted by total or net severity.

When the analyst selects a metric, the severities in the call-path tree widget
are updated accordingly. When they select a pair of metric and call path, that
severity view gets visualized in the remaining parts of the user interface. The
columns “Severity” and “Self” can be swapped in any of the two tree widgets.
The leftmost determines whether total or net severity is being visualized.

A glyph in the leftmost column of the call-path tree widget guides the an-
alyst to the call paths with the largest severity by colour-encoding the severity
relative to the respective parent’s severity. The colour map can be user-defined.
A linear black (100% relative severity) to transparent (0%) map is used by de-
fault. A tilde printed in the second column of the call-path tree widget indicates
a large-variation severity view for detailed evaluation. If a severity view in the
descendants of a call path exposes large variation, an asterisk is printed in order
to speed up finding that severity view.

5.2 Visualizing Performance Data in its Spatial Context

The 3d viewport in the upper right of the user interface (Fig. 2) renders the
geometry in the simulation domain. The severity for each mpi rank is visualized
colour-coded on the respective part of the geometry. The colour map can be
user-defined. A linear black (0% severity) to light grey (100%) map is used by

Views Reduction

Non-Zero 48,031 —
Suggested 37,696 22%

(a)

0.0

0.5

1.0

0.00 0.01 0.02 0.03

Threshold

R
e
l
.
#

V
i
e
w
s

(b)

Fig. 3: Search space reduction: the table (a) lists the number of non-zero views
and the number of suggested views (⌧q = 0.01). The plot (b) presents the ratio
of the number of suggested views to the number of non-zero views per threshold.

default. The simulation domain can be explored by moving a virtual camera with
five degrees of freedom using keyboard and mouse. Elevation is limited to ±90�,
and rotation around the viewing direction is locked in order to keep orientation
intuitive and to prevent the analyst from losing track of the perspective.

The table in the lower left of the user interface lists the severities for each
mpi rank alongside the properties of the associated part of the geometry, i.e.,
the number of finite elements and their surface area. In addition, the severity is
related to these properties by, for instance, presenting the severity per surface
area. A parallel coordinates plot in the lower right presents the same data as the
table for a better, concise overview. This is particularly helpful for simulations
using many mpi ranks. Each axis is normalized and can be flipped. That way
the performance data can be inspected for meaningful structures when related
to the geometry.

The views are linked: a geometry part or the associated mpi rank can be se-
lected in the 3d view or the table. Selected geometry and the related information
are then highlighted in all three views.

6 Results

We have preliminarily evaluated our system with performance data from a small
sheet-metal forming simulation, executed on 4 thin nodes of SuperMuc (Phase
1) [1]. The performance data has been pre-processed using the remapping func-
tionality of the Cube performance profile browser [2]. That way the performance
measurements for actual computations get separated from those for mpi calls.

The automatic suggestion mechanism e↵ectively sieves out those views that
expose only low variation in performance: for ⌧q = 0.01 the search space is
reduced by 22% (Fig. 3). Larger thresholds filter out more views. However, since
the variation coe�cient is normalized to the mean severity, some high-variation,
high-severity views might erroneously be filtered out.

In most of the simulation’s functions mpi ranks 1 and 3 required most cpu-
time. The data for the ranks even forms two almost separate classes (Fig. 2).
The 3d visualization clearly points out that mpi ranks 1 and 3 are computing

high-detail parts of the geometry. With our tool, simulation experts were able
to relate the observed performance phenomenon to a disadvantageous domain
decomposition that did not consider the forming tool’s shape.

7 Conclusion and Future Work

Our system helps analysts evaluate an hpc application’s performance behaviour
based on profiles by greatly reducing the search space: severity views that do not
expose variation in performance are sieved out. Glyphs representing the severity
of and labels indicating large-variation severity views quickly guide analysts
down the application’s call hierarchy towards important severity views. Relating
the performance data to the simulation domain provides valuable insight. Our
tool directed simulation experts to the domain decomposition as the cause for
a performance phenomenon. However, tests with improved decompositions and
significantly more compute nodes are left for future work.

Acknowledgements

This work has been partially funded by the German Federal Ministry of Research
and Education (BMBF) under grant number 01IH13001D (Score-E).
This work has been partially funded by the Excellence Initiative of the German
federal and state governments through the Jülich Aachen Research Alliance –
High-Performance Computing.

References

1. SuperMUC petascale system, https://www.lrz.de/services/compute/supermuc/
systemdescription/

2. Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Further
improving the scalability of the Scalasca toolset. In: 10th Intl. Conf. Appl. Parallel
and Scientific Computing (2012)

3. Isaacs, K.E., Giménez, A., Jusufi, I., Gamblin, T., Bhatele, A., Schulz, M., Hamann,
B., Bremer, P.T.: State of the Art of Performance Visualization. In: EuroVis - STARs
(2014)

4. Schulz, M., Levine, J.A., Bremer, P.T., Gamblin, T., Pascucci, V.: Interpreting
performance data across intuitive domains. In: Proc. 40th Int. Conf. Parallel Process.
(2011)

5. Wylie, B.J.N., Geimer, M.: Large-scale performance analysis of PFLOTRAN with
Scalasca. In: Proc. 53rd Cray User Group meeting. Cray User Group Inc. (2011)

https://www.lrz.de/services/compute/supermuc/systemdescription/
https://www.lrz.de/services/compute/supermuc/systemdescription/

	Visualizing Performance Data With Respect to the Simulated Geometry

