
EUROGRAPHICS 2016 / K-L. Ma, G. Santucci, and J. J. van Wijk
(Guest Editors)

Volume 35 (2016), Number 3

Interactive 3D Force-Directed Edge Bundling

Daniel Zielasko, Benjamin Weyers, Bernd Hentschel, and Torsten W. Kuhlen

Visual Computing Institute, RWTH Aachen University JARA – High-Performance Computing

Figure 1: Node-link diagram of an almost fully connected, bidirectional graph, originating from a NEST simulation based on
a macaque’s brain [GD07]. These images depict 32 vertices each of which represents a brain region. The edges are the regions’
interconnectivity. Left: original graph; Right: the same graph after edge bundling; the edges are directed from purple to yellow.

Abstract
Interactive analysis of 3D relational data is challenging. A common way of representing such data are node-link
diagrams as they support analysts in achieving a mental model of the data. However, naïve 3D depictions of complex
graphs tend to be visually cluttered, even more than in a 2D layout. This makes graph exploration and data analysis less
efficient. This problem can be addressed by edge bundling. We introduce a 3D cluster-based edge bundling algorithm
that is inspired by the force-directed edge bundling (FDEB) algorithm [HvW09b] and fulfills the requirements to be
embedded in an interactive framework for spatial data analysis. It is parallelized and scales with the size of the graph
regarding the runtime. Furthermore, it maintains the edge’s model and thus supports rendering the graph in different
structural styles. We demonstrate this with a graph originating from a simulation of the function of a macaque brain.

Categories and Subject Descriptors (according to ACM CCS): Data Structures [E.1]: Graphs and networks—
Computing Methodologies [I.3.8]: Computer Graphics—Applications

1. Introduction

Graphs are a ubiquitous type of data structure, which describes
relational data and is often visually inspected in its represen-
tation as a node-link diagram. Ware and Mitchell showed
[WM08] that when enriched with the appropriate depth cues,
such as provided by immersive virtual environments, graphs
laid out in 3D, can support data analysis. This is especially true
for graphs with a natural spatial embedding, for example brain

region connectivity data [ABH∗13,BSL13, BSJ∗14], where
a reduction to 2D results in a loss of information. However,
when laid out in 3D, graphs are prone to visual clutter, even
more than in a 2D layout. This makes graph exploration and
data analysis less efficient. Aside from methods that change
the positioning of vertices, like in [FR91], this problem can be
addressed by methods changing the course of the edges. The
latter can be classified into methods that perform local changes,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Zielasko et al. / Interactive 3D Force-Directed Edge Bundling

such as EdgeLense [WCG03] or Edge Plucking [WC07], and
global methods such as edge bundling [Hol06, PX05]. Edge
bundling is a method that combines geometrically close edges
into bundles, which use much less screen space. This work in-
troduces a 3D cluster-based edge bundling algorithm that is in-
spired by the force-directed edge bundling (FDEB) algorithm
[HvW09b] and fulfills the requirements to be embedded in an
interactive and immersive framework for spatial data analysis.

Interactivity, on the one hand, imposes the need of keeping
the system’s response time within 100ms [Nie93], while nav-
igating and interacting with the visual representation of the
graph and updating it at 30 frames per second or even more fre-
quently when used with current 3D image projection devices.
On the other hand, it requires algorithms to be fast enough so
that they can be added to the workflow of an analyst. The re-
quirement due to runtime is hard to define, since this is affected
by several conditions. A duration in the order of a few seconds
is acceptable [Nie93], until it has to be performed frequently.

Furthermore, the algorithm should be applicable to general
graphs. This enables the possibility to be embedded into a
general analysis framework. Moreover, special graphs like
weighted and directed ones should be supported without
restrictions. For this purpose, the presented approach is
meant to maintain the graph’s model, or rather an explicit
geometry of it. On the one hand this allows applying the same
visual representation to the graph when unbundled and on the
other hand allows to perform semantic reasoning or standard
graph analysis on the base of the bundled and thus changed
graph. Additionally the inspection of a 3D graph on a 2D
display can be difficult. This makes the use of immersive
display technologies as CAVEs or HMDs promising. Here
the explicit geometry again is useful as it is trivial to integrate
into immersive virtual environments that then are accessible
by those display technologies.

Our main contributions are a native 3D edge bundling
algorithm that is optimized for interactive data analysis. Fur-
thermore, it offers flexible rendering styles based on an explicit
bundle topology. Finally, the algorithm’s runtime is resolution
independent and should in general scale with the graph size.

A preliminary work was published in the poster abstracts
of IEEE InfoVis 2014 [ZWHK14].

2. Related Work

The representation of relational data as node-link diagram is
prone to visual clutter. Holten et al. [Hol06, HvW09b] intro-
duced the approach of merging geometrically close edges to
bundles with the objective of reducing edge clutter for general
graphs. For this purpose, their force-directed edge bundling
algorithm (FDEB) attaches spring and electrostatic forces to
segmentation points of the edges that then attract each other.
This algorithm works very well for smaller graphs and is gener-
alizable to 3D, but does not scale [Bon00], as it has a quadratic
runtime in the number of edges. Selassie et al. [SHH11]

extend this algorithm to work better on directed graphs since
antiparallel bundles are explicitly laid side by side.

Another class of edge bundling approaches implicitly
bundles edges together by routing them through nearby, static
control points [CZQ∗08, LBA10b, PNBH11]. These points
are obtained by a regular grid or a mesh geometry, which is
generated from the graph’s structure. These approaches avoid
the costly edge-to-edge comparisons but require an appropri-
ate geometry generation. If the density of points is too low,
edges are sharply bent, or in the opposite case, are not bundled
at all. Additional challenges arise with the extension to 3D.
For example, there are a lot more possible routes for the edges
to take and it is more difficult to aid them in taking a common
one. However, for a limited three-dimensional case, i.e.,
with the vertices and edges bound to the surface of a sphere,
Lambert et al. [LBA10a] showed that it is possible, in general.

A number of recent approaches take advantage of the pixel
pipelines of today’s GPUs [EHP∗11, HET12, TE10]. This en-
ables massively parallel processing in the pixel space. These
image-based techniques are to some extent similar to the ones
discussed before, as the result of the GPU accelerated calcula-
tions, e.g., a density field, can be described as a set of control
points, even if equipped with a weight and an expansion to 2D.
These approaches are very fast, but they are not naively adapt-
able to 3D, since when the view is changed, the complete edge
bundling has to be recomputed. Depending on the size of the
graph, this still could be possible in real time. However, with-
out major changes in the algorithms, the resulting bundling de-
pends on the view, which would be very confusing for the user,
as it would be hard to obtain a consistent mental model of the
graph. Simultaneously, view changes are very common in inter-
active applications. As mentioned in the introduction, graphs
laid out in 3D support data analysis [WM08], such as provided
by immersive virtual environments. But in projection setups
like CAVEs [CNSD∗92] the user usually does not look orthog-
onally at the projection screens, or even worse, simultaneously
looks in different angles on different projection screens. This
would lead to artifacts at the borders when using image based
techniques. Another possibility to adapt the idea of pixel based
methods to 3D is to transform them to the voxel space. This neu-
tralizes a bunch of the mentioned issues, but simultaneously
discards the main advantage of pixel based algorithms, namely,
that for the full resolution not all voxels can be computed in
parallel. In summary, it is very difficult to handle image space
techniques for edge bundling in an interactive 3D application.

Böttger et al. [BSL13,BSJ∗14] were the first to construct an
algorithm explicitly adapted to full 3D. It combines methods
from FDEB and kernel density estimation edge bundling
(KDEEB) [HET12]. They compute all pairwise edge compat-
ibilities and then move an increasing count of support points
to a weighted mean of the surrounding points. However, the
authors stated that their approach is not able to draw weighted
graph bundles (e.g. by increasing line thickness), “. . . because

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Zielasko et al. / Interactive 3D Force-Directed Edge Bundling

Figure 2: Edge bundling pipeline. The edges are clustered
and then, per cluster task-parallel, bundled and drawn.

inclusion of all weighted connections would not be feasible due
to current memory and computational limitations.” [BSJ∗14]

In contrast to these approaches our keeps the graph’s model
and thus there is no increase of memory consumption in
general for any preferred bundle/edge representation, which
includes different thicknesses for different weights.

Gansner et al. designed Multilevel Agglomerative Edge
Bundling for Visualizing Large Graphs (MINGLE) consisting
of two components [GHNS11]. First, they reduced the
complexity of the problem by clustering the edges and
building a proximity graph. Second, the decision to combine
a pair of neighbored edges is made by calculating if there is
a saving of “ink” in this case. They use the quantity of ink as
a metaphor for the used pixel space and this again is a metric
for display clutter. Our algorithm also follows a two-stage
approach. But in the first step, it is based on the combination
of a more drastic separation of edge clusters that are calculated
in advance, and in the second step, we use a variation of the
original FDEB algorithm for the edge bundling instead. This
produces smoother edges, which is important as you want the
user to be able to track the shape of connections without being
distracted by sharp bends fetching the attention.

3. Method

In this paper, we define a Graph G as an ordered tuple (V,E),
where V ∈R3 is a finite set of vertices and E⊆V×V a set of
edges. Without loss of generality, we assume that an edge e
is an ordered tuple (u,v), with u,v∈V , as we can order u and
v in case of an undirected graph, e.g., by the order of their
occurrence in the underlying data structure. So, in case of
a directed as well as of an undirected graph, we can identify
an edge’s origin, destination, and direction. Thus, for a given
e = (u,v), we define~e = v− u. For the purpose of drawing,
an edge is described as a set of points e = {e(i)}0≤i≤k, with
k∈N. Furthermore let n= |V | and m= |E|.

To avoid the complete edge-to-edge comparisons and
reduce the runtime complexity, we take advantage of the fact,
already stated by Holten et al. [HvW09b], that only very few
edges really influence the positioning of any given one. Thus,
we break down the edge bundling into a two-step process (see
Figure 2). In Section 3.1 we describe how the edge population

Figure 3: Example of a DBSCAN cluster calcula-
tion [EKSX96], with minimal cluster size is 2. The dashed
circles, each framing one data point, depict the destiny
parameter eps. Whenever a data point falls within the
radius of any existing point of the current cluster, it is added
recursively. The result is a green and a purple cluster. The two
black data points are marked as unclustered.

is divided into clusters, without using a full pairwise compari-
son approach. From these edge clusters, subgraphs are created
and a modified FDEB algorithm is calculated in parallel over
these, which is described in Section 3.2. While these calcula-
tions are still running, the rendering takes place to provide the
user with intermediate results (see Section 3.3). Here, various
rendering styles are offered to the user. For example, a way of
reasonably drawing weighted edges, or bundles, is presented.

3.1. Edge Clustering

Most of the runtime of FDEB originates from the calculations
of the compatibility for every pair of edges and of the force
every single edge exerts on the current one. Notably, the
compatibility and consequently the forces for most of the pairs
are in most cases almost zero. Therefore, we cluster edges with
high compatibility in advance and only do further calculations
within these clusters. To measure the edge similarity, we
define some basic edge metrics. These metrics are inspired
by the ones used to calculate the pairwise edge compatibility
in FDEB. This first is the edge length corresponding to the
scale from one edge to the other

‖v−u‖∈R,

the edge’s gradient corresponding to the angle between two
edges in FDEB(

(vi−ui)

‖v−u‖

)
1≤i≤3

∈R3, with v=(v1,v2,v3)
T

and the edge’s position

v+u
2
∈R3.

These metrics are composed of very basic geometric measures
and can be complemented or replaced by more application-
specific ones, e.g., metrics describing graph topology or edge

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Zielasko et al. / Interactive 3D Force-Directed Edge Bundling

Figure 4: Graph from Figure 1 shown with color-coded clusters consisting of similar edges; black edges are unclustered, i.e., not sim-
ilar to any other. Left: Complete graph; Right: 6 example clusters, where the upper left depicts not a cluster, but all unclustered edges.

weights if it is desired that bundled edges share, e.g., common
origin/destination vertices or only similar-weighted edges
should be laid together. It is important to note that the chosen
metrics should not refer to pairs of edges but instead are
computable per edge. Otherwise the quadratic complexity
of FDEB just would be moved to a preprocessing step. In
most cases they do not have the same expressiveness as their
compatibility counterparts, but it is completely sufficient to
find a preselection. For example, the angle between two edges
is more meaningful than comparing their gradient. This means
that the found clusters do not have to be perfect, but a superset
of similar edges, as the connected edge bundling algorithm
will do the precise work in the following.

This basic set of the three metrics finally specifies a seven-
dimensional feature vector for every edge. After normalizing
every component to the interval [0,1], these vectors are inserted
into an R*-tree [BKSS90], which enables an efficient access
to this multi-dimensional data with spatial queries. Compared
with an R-tree, an R*-tree guarantees a better aligned indexing
within a longer setup time but faster access during runtime. For
the clustering we use DBSCAN [EKSX96], a density-based
clustering algorithm, whose parameter for the minimal cluster
size is set to a value of 2. This is because we want to bundle
sets of similar edges starting with a size of 2. The number
of clusters, or the similarity of edges, necessary to form a
cluster is determined by the density parameter eps. It is a
threshold for deciding if two data points, according to their
Euclidean distance in the parameter space, are close enough to
be assigned to a common cluster (see Figure 3). A default eps
value is chosen by first precomputing an interval of reasonable
values [l,u], starting with a lower bound where most of the
edges first become assigned to any cluster and an upper bound
where the result is only one cluster. Finally the value is set
to l+(u−l)/3 as this often has turned out to be a good choice
in our experiments, which means there is no loss of bundling
quality while a good runtime performance is achieved.
However, always computing the “right” density parameter
for the clustering algorithm is not feasible. On the one hand, it
could be very different for two graphs and on the other, a good

parameter selection strongly depends on the current analysis
task. But since the clustering is fast, it allows us to put the user
in the loop of interactively choosing or changing the value on
demand within the precalculated interval (see Section 5). After
selecting an eps value, a color-coded visual representation
of the resulting clusters is instantly shown (cf. Figure 4).

Out of the resulting clusters we create new subgraphs,
whereas from the implementation view they only hold
references to the edges of the original one, such that changes
in the subgraphs propagate to the root graph. Note that the
subgraphs are not necessarily connected, even if the parent
graph was. They are processed by a modified FDEB algorithm,
described in the next section, below.

3.2. Edge Bundling

Our bundling strategy is based on the force directed
edge bundling algorithm described by Holten and van
Wijk [HvW09b]. This approach merges geometrically similar
edges to common bundles. For this purpose, it attaches spring
and electrostatic forces to segmentation points upon the edges
that mutually attract each other (see Fig. 5). We made major
changes and extensions to the algorithm to achieve especially
three goals:

(G1) Reducing parameters
Of course it could be asked why especially an approach
with the aim to be interactive wants to reduce parameters,
as user involvement with direct feedback is a good method
to find suitable parameters. However, it should be kept
in mind that edge bundling is a tool for supporting data
analysis and the user should need as little time as possible
to tweak algorithm parameters.

(G2) More stable force system
The simulation of forces is often very fragile, e.g., to
numerical instability. We want to clear out the problems
we identified.

(G3) Increase computational efficiency
This goal addresses the desired interactivity of the edge
bundling.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Zielasko et al. / Interactive 3D Force-Directed Edge Bundling

Figure 5: Segmented edges e1 and e2. Example force calcu-
lation for the 3rd segmentation point of e1, assumed there is
only one other relevant edge e2: F(e(3)1)=Fe(e

(3)
1)+Fn(e

(3)
1).

All other points are static. Figure based on [HvW09b].

In the initialization step, the compatibilities for all edge pairs
are calculated with more precise metrics than within the clus-
tering and stored (G3, cf. Algorithm 1, line 1). They are needed
later, as it depends on the compatibility of two edges to which
extent they attract each other. It is possible to compute them
now, as the compatibility measurements only depend on the
origin and destination point of the edges, as described below,
which are assumed not to change during the algorithm. If it is re-
quired to change single vertex positions during the simulation,
a first naïve solution to this would be to restart the bundling
for the affected clusters. If the changes provoke changes even
in the clustering, the computations have to be restarted.

The compatibility criteria starts with the angle between two
edges Ca(e1,e2), with

Ca(e1,e2)=

∣∣∣∣ ~e1 ·~e2
‖~e1‖·‖~e2‖

∣∣∣∣∈ [0,1].
The second one describes the scale between two edges
Cs(~e1,~e2) with,

Cs(e1,e2)=
min(‖~e1‖,‖~e2‖)
max(‖~e1‖,‖~e2‖)

∈(0,1].

At last, we rate the positioning to each other Cp(~e1,~e2) with,

Cp(e1,e2)=
‖~e1‖+‖~e2‖

2
‖~e1‖+‖~e2‖

2 +‖mid(e2)−mid(e1)‖
∈ [0,1],

with mid(e)=
e(0)+e(k)

2
.

We intentionally leave out the so called visibility criterion,
described by Holten et al. [HvW09b], as we argue that it is
only a weighted combination of the other criteria. The reason
for adding this fourth metric are edges that are comparable
with respect to the other metrics, but not comparable in the
intended sense. As an example, the opposite edges of a skewed
parallelogram are mentioned. However, in our opinion this
already is covered by the position metric.

Now, the total compatibility C(e1, e2) is calculated as
follows:

C(e1,e2)=Ca(e1,e2)·Cs(e1,e2)·Cp(e1,e2)∈ [0,1]

Algorithm 1: Edge Bundling
Data: G=(Vertices, Edges),

numOfCycles,
maxDisp // maximum Displacement

1 comp = CalcCompatibilityMap(Edges);
2 for numOfCycles do
3 DoEdgeSegmentation(Edges);
4 while newEnergy < oldEnergy do
5 oldEnergy = newEnergy;
6 newEnergy = 0;
7 foreach Edge e do
8 foreach Edge ex do
9 foreach segmentation point i do

10 // e(i) is the ith segmentation point of e

11 force = CalcForces(e(i) , e(i)x) · comp[e,ex];

12 e(i)= e(i) + min(maxDisp, force);
13 newEnergy = newEnergy + force;
14 end
15 end
16 end
17 end
18 end

After the initialization, a number of cycles c are simulated
(see Algorithm 1, line 2). At the beginning of any cycle,
each edge is subdivided by adding new segmentation points,
refining the resulting curves (line 3). With every cycle, the
number of points is doubled by evenly distributing the new
ones along the risen edge line segments and simultaneously
dropping the old ones. Within these cycles, we avoid an
explicit number of iterations but instead iterate until the total
energy in the system does not further decrease. This eliminates
a parameter (G1) and in addition assures that edges are not
bundled with different densities (G2), a problem already
described by Böttger et al. [BSL13]. Within every iteration,
for every segmentation point of any edge, the total force it is
affected by is calculated. This consists of two components
(see Figure 5). First, the force Fn holding the segmentation
point e(i) in between its neighbors, with spring constant k

Fn(e(i))=k·(‖e(i−1)−e(i)‖+‖e(i)−e(i+1)‖)2.

We changed the force from a linear to a quadratic behavior,
which leads to more stable results (G2), as we want to better
imitate the behavior of a physical spring and penalize the
points in running away much harder. The second force
component Fe is the sum over all forces to the corresponding
segmentation points of the other edges

Fe(e(i))= ∑
ex∈E

(
C(e,ex)·‖e(i)x −e(i)‖

)2
.

Here again we take a squared distance, for the same reasons as
before. The total force on an edge segmentation point then is

F(e(i))=Fn(e(i))+Fe(e(i)).

Finally, we move the given point along the force vector by the
step size sc=s/2c, with c the number of the current cycle run.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Zielasko et al. / Interactive 3D Force-Directed Edge Bundling

Figure 6: Two bundles coming from the left become one
bundle, with their widths stacked. (a) without an additional
smoothing step. (b) with an additional smoothing.

As an additional difference to FDEB, we cap this value by the
length of the total force vector (G2). This prevents an edge
being attracted by another edge when they are not similar,
as a point originally was moved along the combined force
with a defined step size, as long as the force was not exactly
0. From the increasing number of segmentation points, Holten
et al. also expect smoothed edges. We think that the bundling
with respect to G3 is too expensive for this task and therefore
recommend to choose as few cycles as possible and as many
as necessary, and to instead smooth the edges in the following
rendering step (see Section 3.3).

It should be mentioned that we added the option to perform
an ambiguity free variant of the algorithm as described
in [LLCM12], where only edges with either a common
origin or a common destination are bundled. This would
guaranty that there is no loss of information in the bundled
representation, but in general reduces less clutter.

3.3. Rendering

We included in our framework a graph view, which renders
a graph and consists of a vertex view and an edge view. A
single vertex view draws all vertices as spheres, due to the
framework’s flexibility, it would be possible to place different
vertex representations here. Every edge cluster is drawn by an
independent edge view, so less data has to be updated on the
graphics card when one parallelized edge bundling task (see
Section 3.4) has finished and triggers an update of the corre-
sponding edge segments. In addition, keeping the separation
helps to reduce computational costs of all following steps.

3.3.1. Edge Rendering Style

During all computations, the graph and the changing edge seg-
ments are redrawn every frame with a so-called edge rendering
style (see Figure 7a). Thus, the user is able to interactively ex-
plore a largely cleaned graph, while the bundling is being
processed. This is positively affected by the observation that
the main structural changes, specifically the reduction of edge
clutter, take place during the first cycles of the bundling algo-
rithm, whereas the following ones mainly just refine the result.

The edge segmentation points are supplied to the OpenGL
pipeline as line segments, where they are rendered as polylines
using a geometry shader. In the case of a directed graph,
the direction is encoded by the intensity, from dark-to-light
according to a study of Holten et al. [HvW09a]. Although,
a tapered representation is even higher rated, this would
interfere with the edge weight coding of the other views (see
Section 3.3.2) and for reasons of usability, we prefer to keep

Algorithm 2: Segmentation to explicit Bundles
Data: G=(Vertices, Edges),

// e(i) is the ith segmentation point of e and
// k=2(cycles−1)−1
∀ Edges e :∃1 (e(0),..,e(k)),
eps // density parameter

Result: Bundles // every bundle is a strip of segments
Topology // tracks for every edge the bundles it participetes in

new segment = (Vector3D, Vector3D);
foreach Edge e do

segment[0] = e(0);

segment[1] = e(1);
R*Tree.Add(segment);

end
for i=1..k do

Cluster = DoClustering(R*Tree, eps);
R*Tree.Clear();
// consider unclustered segments as a set with size 1
foreach set of segments {s0 ,..,sr} in Cluster do

// {e0 ,..,er} corresponding set of Edges
foreach e∈{e0 ,..,er} do

UpdateTopology(e);
segment[0] = GetMeanSegEndPoint({s0 ,..,sr});

segment[1] = e(i+1);
R*Tree.Add(segment);

end
if {e0 ,..,er}were a cluster before then

ExtendBundle({s0 ,..,sr});
else

AddBundle({s0,..,sr});
end

end
end

it consistent. All together, the chosen representations are just
examples and the framework allows to change the represen-
tations and even interactively switch between a set of them,
further demonstrated in the following (also see Section 5).

3.3.2. Bundle Rendering Styles

The result of most edge bundling approaches are lines, or in
our case tubes, laying over each other. However, as bundles are
only implicit, this means there is neither explicit knowledge
about which edges become part of a bundle, nor when or where
this happens. However, this is not sufficient for all applications.
For instance, the user could be interested in the number of
edges forming a bundle, but usually this information is lost.
Of course, there are work-arounds, by, for example, drawing
edges with a stacking alpha [ZBDS12] or just beside each
other [PNBH11]. But as work-arounds they all come with their
limitations, as bundles stay implicit and the representation is
not exchangeable. Another prominent example are weighted
edges. To overcome this issue, we extract the explicit bundling
topology based on the segmented edges. For this purpose,
we have to decide when sets of edges form bundles and when
not. As a result of the quasi-continuous physical simulation,
the edge segmentation points do not necessarily lie precisely
on top of each other. However, considering single points is
usually not a good idea, as co-located points do not clearly
imply partially co-located edges. The edges could cross each
other in this point or could even be antiparallel.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Zielasko et al. / Interactive 3D Force-Directed Edge Bundling

Figure 7: A section of the graph shown in Figure 1 depicting different rendering styles: (a) edge rendering style, (b) bundle
rendering style, line width represents the number of edges combined in this bundle, (c) bundle rendering style, line width represents
the combined edge weight in this bundle.

Therefore, we introduce an algorithm that identifies
co-located segments, each consisting of a pair of segmentation
points (see Algorithm 2). If two segments lie on top of each
other, we can be sure that they should be part of a bundle. To
find these segments, it is useful to use spatial clustering, so
we use the DBSCAN algorithm [EKSX96]. Again, we have
to decide on the eps parameter. For this purpose, we could
evenly resample the edges and then calculate the eps value so
that two directly successive segments are just not detected as
lying upon each other. But as long as we do not resample with
the length of the smallest segment, we could possibly lose
existing smoothness. Therefore, we leave that step optional
but recommend to use it when there are artifacts in the results.
Hence, the algorithm by default just chooses an eps value
close to the smallest segment. Nevertheless, because of two
other conditions described in the following, we should not get
too confused with the clustering. First, we are still processing
the edge clusters independently, which reduces the number of
simultaneously processed edges, but even more important, due
to the clustering conditions all included edges are very similar
and it is more difficult to get confused with just crossing
segments, etc. Second, the previously performed bundling
algorithm constrains that only corresponding segmentation
points, i.e., with the same index, attract each other. This is
favored by the fact that the segmentation points of implicitly
bundled edges are very close together. Furthermore, this
allows to systematically cluster the segments in groups from
the origin of all edges to the destination (cf. Algorithm 2). The
latter additionally enables the possibility to keep track of the
edges’ topology. Thus, the results are not only explicit bundles,
but also do not lose the edge semantic, as it is still known that
a specific edge consists of these bundles in that sequence.

During the process of replacing sets of segments by bundles,
segmentation points have to be averaged to single points in a
bundle and as everything needs to be kept connected, although
previous points have to be shifted. This could cause unaesthetic
bends as illustrated in Figure 6. Hence, we pipe the results

through a Laplacian smoothing. The resulting bundles finally
are described by Catmull-Rom splines [LAM10] and supplied
to the OpenGL pipeline, where they are rendered using a geom-
etry shader. Due to the fact that we have calculated an explicit
representation and kept the edge topology, we are now able to
add various data to our representation. We implemented two
examples, edge density and weight (see Figure 7). Beyond
that, it would be even possible to represent time varying data.

In summary, the user has the opportunity to switch between
different views depending on what she wants to analyze (see
Section 5) or highlight.

3.4. Parallelization

Up to now, the edge clustering was only used to partition
the data before it is processed by a non-scaling algorithm.
But as the available edge clusters (see Section 3.1) are
independently processed by the edge bundling (see Section
3.2), it is possible to create a new task for every cluster
(referring to task-based parallelization). Thus, the bundling
is parallelized. The same applies for an update of the drawing
(see Section 3.3). However, a large variance in cluster sizes
causes load-balancing issues in static parallelization.

This leads to a second layer of parallelization within the
bundling. Two outer for loops of the edge bundling algorithm,
each iterating over all edges in a cluster, are parallelized, too.
The first one is hidden in the edge segmentation function
(cf. Algorithm 1, line 3) and does not need any adjustments
as this happens completely independent and therefore no data
races are possible. The second one is the outer one iterating
over all edges within a cycle (cf. Algorithm 1, line 7). To solve
data races here, we buffer the position updates and swap them
outside of the loop. Finally, we synchronize the update of the
total energy.

Both layers together parallelize the edge bundling and
simultaneously solve possible load balancing issues.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Zielasko et al. / Interactive 3D Force-Directed Edge Bundling

Figure 8: Dependency of the density parameter eps to
runtime and number of clusters, within the useful range of
eps values for this particular graph. This means from, "there
is first time a real clustering" to, "clusters start getting so
small that there is no more bundling worth mentioning".
Additionally in the background the ratio of unclustered edges
(dark) to clustered ones (bright) is depicted.

4. Results – Runtime

As proof of concept we bundled an example graph with only
32 vertices but almost 600 edges (see Figure 1), our algorithm
took about 1.36 seconds (SD =± 0.036, in 10 measurements)
with an eps value of 0.125 and 28 identified clusters. Thus, it
was about 150 times faster than our basic 3D implementation
of the FDEB algorithm, which took about 220 seconds. In this
example that makes the difference in aiming for an interactive
usage. Without any parallelization and the same parameters
our algorithm took about 5.03 seconds (SD =± 0.037, in 10
measurements). Measurements were performed on an Intel
Xeon E5540 2.53GHz quadcore-processor running Windows
7 with 12 GB of RAM and a GeForce GTX480 graphics card.
The whole measurement series was performed on the graph
with different density parameters and in relation to the number
of resulting clusters, which is shown in Figure 8. As expected,
the plot shows a decreasing runtime with an increasing number
of clusters, although the distribution of cluster sizes was not
examined here. All bundling results for the chosen eps interval
are well-shaped and just differ in the degree of bundling.

Much more interesting than these raw numbers, as they
heavily depend on the number and distribution of the clusters
(see Fig. 8) that again are chosen by the user, is the question
concerning runtime scalability [Bon00] regarding graph size.
Following the processing pipeline (see Figure 2), first, setting
up the R*-tree and clustering all edges costs O(m log m),
with m number of the edges. Unfortunately, due to the
changed termination condition within an edge bundling cycle
(see Section 3.2), we are no longer able to guarantee any
meaningful theoretical runtime complexity. This is because it
is theoretically possible that there is an epsilon-small decrease
in the total energy with every iteration so the algorithm
does not terminate. This is not an issue in practice as the
algorithm stops when the total energy has stayed the same or
has increased in comparison to the last step of the last cycle.
Due to numerical reasons the total energy cannot infinitely

decrease without getting zero. Nevertheless, to get an idea of
the runtime complexity we could assume a constant number
of iterations or a threshold. This would lead to a quadratic
runtime with respect to the number of edges in a cluster.
When considered together, we get an overall complexity of
O(|Cmax|2), with Cmax the largest edge cluster, which in the
worst case again is O(m2). Based on the runtime analysis, the
proposed algorithm does not scale in the worst case.

But indeed, with examples that are not specially designed,
the algorithm behaves very well. This is because |Cmax| does
not necessarily increases with the size of the input as many
graphs and networks in real world applications are sparse and
have a low connectivity. Thus, with increasing size, graphs
can be broken down to an increasing number of components.
Edges in different components are very likely not similar,
regarding the used metrics (see Section 3.1 and 3.2), and
therefore would be assigned to different clusters.

In conclusion, graphs with the mentioned properties will not
generate larger edge clusters and therefore support a scaling
of the proposed algorithm. Of course, these considerations
do not hold for all graphs. In Figure 4 a nearly fully connected,
bi-directed graph is shown. With every vertex added to such
a graph, the mean size of the clusters will grow, so that the
runtime is quadratic, as within the clusters we still operate
for every edge on every other one. Nevertheless, the clustering
still reduces the problem, as observable in Figure 4.

5. Application

The need for the presented edge bundling technique results
from applications like the one described in the following.
VisNEST [NSA∗13] visualizes various data originated from
a NEST simulation [GD07], i.e. simulations of large scale
neuronal networks, in immersive environments. For this
purpose there are different views on the data that are linked.
One of these is the connectivity view, which “shows how
each brain area is connected to others and how it may spread
activity along its pathways” [NSA∗13]. The vertices have
static positions, each in the center of the brain region they
represent. The application is designed to run in a CAVE-like
environment, but it is possible to use it with other VR
devices as well as on a desktop PC. A basic set of interaction
techniques is given by the application context. First, there is
basic navigation and selection. Second, there are some options
to directly manipulate the graph, as limiting the depicted
edges by their weight, change colors, or move vertices.

We added the possibility to initiate a bundling of the current
graph (see Figure 1 and 7). In addition, it is possible to enable
a bundling mode, where with every change in the graph struc-
ture, the bundling is automatically refreshed. This method and
all options are accessible via an extended pie menu [GPL∗13].
The usual work flow starts with the clustering of the graph
with the precalculated eps value (see Section 3.1). The result
is color coded as depicted in Figure 4. The colors are evenly
distributed within the CIE L*a*b* color space, which is

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Zielasko et al. / Interactive 3D Force-Directed Edge Bundling

perceptually uniform [Hun58, McL76]. However, currently
we are not optimizing the cluster coloring with respect to the
clusters’ distance to each other. Altogether, the visualization
is not sufficient to analyze the clusters in detail, but it is for
obtaining a quick overview of whether the calculated clusters
are meaningful or not. If this is not the case, the user is able
to change the eps value via a slider within the precalculated
interval (see Section 3.1) and the cluster visualization will ne
updated accordingly. When satisfied with the clustering, the
user starts the edge bundling and simultaneously gets feedback,
as the updated positions of the edge’s segmentation points are
directly drawn. The user usually starts inspecting the graph
by rotating and translating the view point, while the bundling
is finished. Now it is possible to switch between the rendering
styles (see Section 3.3). Depending on the active style, addi-
tional parameters can be adjusted, as for example the minimal,
maximal, or both line widths relating to an edge parameter.
Finally, it is possible to continuously fade between the Edge
Rendering Style (see Section 3.3.1) and the unbundled graph,
which can be interesting for finding just the right ratio between
clutter reduction and information loss through edge bundling.

6. Discussion & Future Work

In the following, single aspects of the presented approach
are discussed in sequence of their appearance in the pipeline,
according to Figure 2, and start with the clustering of the edges.

For the calculation of edge clusters, we have used a
density-based approach, which expects a density parameter.
To support the user in choosing the right parameter, we
precalculate an interval of meaningful parameters. To avoid
patronizing the user, we used a very conservative method
for this purpose, starting with a lower bound where most of
the edges first become assigned to any cluster and an upper
bound where the result is only one cluster. This can lead to the
situation that still large parts of the interval are not of interest,
e.g., because there is only one big cluster for larger parts of
the interval. It may be sufficient to be more restrictive for this
part and further analyze the clustering behavior in the future.
This and other user oriented questions have to be addressed by
a subsequent user study, but are out of the scope of this work.

Then, we took the calculated edge clusters and started an
optimized, force-directed edge bundling algorithm on each
cluster independently and in parallel.

Furthermore, we described that the clusters are drawn
independently. This can be an issue with directed graphs
and antiparallel bundles, as it is possible that they are drawn
at the same position and so cover each other. Although we
could change the clustering metrics in a way that these edges
fall in one common cluster, there is no applicable solution
yet to place those bundles relative to each other in 3D. In a
general 2D case, Selassie et al. [SHH11] placed bundles side
by side with respect to a highway metaphor. Unfortunately,
this metaphor does not work in a three dimensional space, as
there is no left and right anymore.

We embedded the proposed method in a data analysis tool
and added user interaction, such as the possibility to fade in and
out between the bundled and unbundled graph. Some of this
interaction could be even more beneficial if it would be pos-
sible to perform them only on parts of the graph. These parts
can often be expected to semantically correspond to the cal-
culated clusters. The only missing component for a realization
is finding a working selection metaphor for the clusters, which
is not straightforward as the clusters are usually interwoven or
hidden. A first idea to achieve this is to combine a standard se-
lection strategy, with the possibility to select a specific cluster
from a list of small multiples, as depicted in Figure 4 (right).
This additionally would support the pure cluster visualization.

We argued that the proposed algorithm should scale for
most graphs appearing in data analysis. This statement
in future could be supported by an empirical user study.
Nevertheless, this represents a challenge due to the sample
size. On the one hand, graphs would have to be synthetically
created, and on the other, they need to be meaningfully
distributed with respect to their properties.

Finally, future work includes investigating the relevance
of edge bundling as a misleading factor in inferring paths or
structures in the data that are actually not there. For example,
axon paths in the brain do not have to follow the paths taken
by the bundles, but can be interesting for neuroscientists and
for this reason are noticed from another view point as for a
specialist from a different domain. Of course, this is not only a
risk, but an opportunity too. If, for instance, the real pathways
are known, the bundles could be attracted by these.

7. Conclusion

Interactive analysis of 3D relational data is challenging. A com-
mon way of representing such data are node-link diagrams
as they support analysts in achieving a mental model of the
data. However, naive 3D depictions of complex graphs tend to
be visually cluttered. This makes graph exploration and data
analysis less efficient. This problem can be addressed by edge
bundling, which combines geometrically close edges into bun-
dles. We have presented a native 3D, edge cluster-based and
parallel edge bundling algorithm that fulfills the requirements
necessary to be embedded in an interactive framework for spa-
tial data analysis. Furthermore, it maintains the topology of the
edge bundles and thus supports rendering of the graph in dif-
ferent structural styles. Finally, the proposed algorithm scales
in runtime with the number of edges for most of the graphs.

Acknowledgments

The authors would like to acknowledge the support by the
Helmholtz portfolio theme “Supercomputing and Modeling
for the Human Brain”. The research leading to these results
has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant
agreement n◦ 604102 (HBP).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Zielasko et al. / Interactive 3D Force-Directed Edge Bundling

References
[ABH∗13] ALPER B., BACH B., HENRY RICHE N., ISENBERG

T., FEKETE J.-D.: Weighted Graph Comparison Techniques for
Brain Connectivity Analysis. Proc. Conference on Human Factors
in Computing Systems (2013), 483– 492. 1

[BKSS90] BECKMANN N., KRIEGEL H., SCHNEIDER R.,
SEEGER B.: The R*-Tree: An Efficient and Robust Access Method
for Points and Rectangles. Proc. ACM SIGMOD International
Conference on Management of Data 19 (1990), 322–331. 4

[Bon00] BONDI A. B.: Characteristics of Scalability and Their
Impact on Performance. Proc. ACM International Workshop on
Software and Performance (2000), 195–203. 2, 8

[BSJ∗14] BÖTTGER J., SCHURADE R., JAKOBSEN E., SCHÄFER
A., MARGULIES D. S.: Connexel Visualization: A Software Imple-
mentation of Glyphs and Edge-Bundling for Dense Connectivity
Data Using BrainGL. Frontiers in Neuroscience 8 (2014), 15. 1, 2, 3

[BSL13] BÖTTGER J., SCHÄFER A., LOHMANN G.: Three-
Dimensional Mean-Shift Edge Bundling for the Visualization of
Functional Connectivity in the Brain. IEEE TVCG 20, 3 (2013),
471–480. 1, 2, 5

[CNSD∗92] CRUZ-NEIRA C., SANDIN D. J., DEFANTI T. A.,
KENYON R. V., HART J. C.: The CAVE: Audio Visual Experience
Automatic Virtual Environment. Communications of the ACM 35,
6 (1992), 64–72. 2

[CZQ∗08] CUI W., ZHOU H., QU H., WONG P. C., LI X.:
Geometry-Based Edge Clustering for Graph Visualization. IEEE
TVCG 14, 6 (2008), 1277–84. 2

[EHP∗11] ERSOY O., HURTER C., PAULOVICH F. V.,
CANTAREIRO G., TELEA A.: Skeleton-Based Edge Bundling
for Graph Visualization. IEEE TVCG 17, 12 (2011), 2364–73. 2

[EKSX96] ESTER M., KRIEGEL H., SANDER J., XU X.: A
Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. Proc. ACM Knowledge Discovery
and Data Mining (1996), 226–231. 3, 4, 7

[FR91] FRUCHTERMAN T., REINGOLD E.: Graph Drawing by
Force Directed Placement. Software – Practice and Experience
21 (1991), 1129–1164. 1

[GD07] GEWALTIG M., DIESMANN M.: NEST (NEural
Simulation Tool). Scholarpedia 2, 4 (2007), 1430. 1, 8

[GHNS11] GANSNER E. R., HU Y., NORTH S., SCHEIDEGGER
C.: Multilevel Agglomerative Edge Bundling for Visualizing
Large Graphs. Proc. IEEE Pacific Visualization Symposium (2011),
187–194. 3

[GPL∗13] GEBHARDT S., PICK S., LEITHOLD F., HENTSCHEL
B., KUHLEN T.: Extended Pie Menus for Immersive Virtual
Environments. IEEE TVCG 19, 4 (2013), 644–51. 8

[HET12] HURTER C., ERSOY O., TELEA A.: Graph Bundling by
Kernel Density Estimation. Computer Graphics Forum 31, 3pt1
(2012), 865–874. 2

[Hol06] HOLTEN D.: Hierarchical Edge Bundles: Visualization
of Adjacency Relations in Hierarchical Data. IEEE TVCG 12, 5
(2006), 741–8. 2

[Hun58] HUNTER R. S.: Photoelectric Color Difference Meter.
Journal of the Optical Society of America 48, 12 (1958), 985. 9

[HvW09a] HOLTEN D., VAN WIJK J. J.: A User Study on Visu-
alizing Directed Edges in Graphs. Proc. International Conference
on Human Factors in Computing Systems (2009), 2299–2308. 6

[HvW09b] HOLTEN D., VAN WIJK J. J.: Force-Directed Edge
Bundling for Graph Visualization. Computer Graphics Forum 28,
3 (2009), 983–990. 1, 2, 3, 4, 5

[LAM10] LAMBERT A., AUBUR D., MÉLANÇON G.: Living
Flows: Enhanced Exploration of Edge-Bundled Graphs Based on
GPU-Intensive Edge Rendering. Proc. International Conference
on Information Visualization (2010), 523–530. 7

[LBA10a] LAMBERT A., BOURQUI R., AUBER D.: 3D Edge
Bundling for Geographical Data Visualization. Proc. International
Conference Information Visualisation (2010), 329–335. 2

[LBA10b] LAMBERT A., BOURQUI R., AUBER D.: Winding
Roads: Routing Edges into Bundles. Computer Graphics Forum
29, 3 (2010), 853–862. 2

[LLCM12] LUO S.-J., LIU C.-L., CHEN B.-Y., MA K.-L.:
Ambiguity-Free Edge-Bundling for Interactive Graph Visualiza-
tion. IEEE TVCG 18, 5 (2012), 810–21. 6

[McL76] MCLAREN K.: XIII-The Development of the CIE 1976
(L* a* B*) Uniform Colour Space and Colour-Difference Formula.
Journal of the Society of Dyers and Colourists 92 (1976), 338–341.
9

[Nie93] NIELSEN J.: Usability Engineering. Morgan Kaufmann
Publishers Inc., 1993. 2

[NSA∗13] NOWKE C., SCHMIDT M., ALBADA S. J. V., EPPLER
J. M., BAKKER R., DIESMANN M., HENTSCHEL B., KUHLEN
T.: VisNEST – Interactive Analysis of Neural Activity Data. Proc.
IEEE Symposium on Biological Data Visualization (2013), 65–72.
8

[PNBH11] PUPYREV S., NACHMANSON L., BEREG S., HOL-
ROYD A.: Edge Routing with Ordered Bundles. Proc. International
Conference on Graph Drawing (2011), 136–147. 2, 6

[PX05] PHAN D., XIAO L.: Flow Map Layout. Proc. IEEE InfoVis
(2005), 219–224. 2

[SHH11] SELASSIE D., HELLER B., HEER J.: Divided Edge
Bundling for Directional Network Data. IEEE TVCG 17, 12
(2011), 2354–63. 2, 9

[TE10] TELEA A., ERSOY O.: Image-Based Edge Bundles:
Simplified Visualization of Large Graphs. Computer Graphics
Forum 29, 3 (2010), 843–852. 2

[WC07] WONG N., CARPENDALE S.: Supporting Interactive
Graph Exploration Using Edge Plucking. Visualization and Data
Analysis 6495 (2007). 2

[WCG03] WONG N., CARPENDALE S., GREENBERG S.: Edge-
Lens: An Interactive Method for Managing Edge Congestion in
Graphs. Proc. IEEE InfoVis 2003 (2003), 51–58. 2

[WM08] WARE C., MITCHELL P.: Visualizing Graphs in Three
Dimensions. ACM Transactions on Applied Perception 5, 1 (2008),
1–15. 1, 2

[ZBDS12] ZINSMAIER M., BRANDES U., DEUSSEN O., STRO-
BELT H.: Interactive Level-of-Detail Rendering of Large Graphs.
IEEE TVCG 18, 12 (2012), 2486–2495. 6

[ZWHK14] ZIELASKO D., WEYERS B., HENTSCHEL B.,
KUHLEN T. W.: Interactive 3D Force-Directed Edge Bundling
on Clustered Edges. In Poster Abstracts of IEEE InfoVis (2014). 2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

