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ABSTRACT

Scene visibility—the information of which parts of the scene are vis-
ible from a certain location—can be used to derive various properties
of a virtual environment. For example, it enables the computation of
viewpoint quality to determine the informativeness of a viewpoint,
helps in constructing virtual tours, and allows to keep track of the ob-
jects a user may already have seen. However, computing visibility at
runtime may be too computationally expensive for many applications,
while sampling the entire scene beforehand introduces a costly pre-
computation step and may include many samples not needed later on.

Therefore, in this paper, we propose a novel approach to precom-
pute visibility information based on navigation meshes, a polygonal
representation of a scene’s navigable areas. We show that with only
limited precomputation, high accuracy can be achieved in these ar-
eas. Furthermore, we demonstrate the usefulness of the approach by
means of several applications, including viewpoint quality compu-
tation, landmark and room detection, and exploration assistance. In
addition, we present a travel interface based on common visibility
that we found to result in less cybersickness in a user study.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and virtual
realities; I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1 INTRODUCTION

Supporting users of virtual environments (VEs) to reach their goals
efficiently is an important task that often requires a certain under-
standing of the VE and the user’s objectives. For example, salient
parts of the environment such as landmarks can be highlighted in the
VE or on maps to facilitate navigation [27] only if they are known to
the system. However, virtual scenes are often not equipped with the
additional information necessary for such supporting interfaces, and
supplying it for each scene requires significant manual effort. Instead,
this task can to some extent be fulfilled by automatic scene analysis
that extracts the necessary information.

An example for this is the automatic adjustment of travel speed
in large or multi-scale environments based on the viewer’s distance
to the scene geometry (e.g., [23, 34, 37, 42]). Furthermore, the
usefulness of World-in-Miniatures (WIMs) can be improved, for
example, by automatically identifying rooms [38] or stories [25].
Another possibility is the automatic generation of virtual tours based
on an understanding of the structure of the scene (e.g., [2, 11]).

A significant amount of information about the scene can be derived
from visibility, i.e., the knowledge about which parts of the scene are
visible from which locations. While such information is often used for
occlusion culling to accelerate rendering (e.g., [1, 22, 35, 36]), it can
also provide some understanding of the structure of the environment,
e.g., to automatically create guided tours guaranteeing that certain
parts of the scene are visually accessible [11]. Furthermore, visibility
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can be used to compute the viewpoint quality of a location [16, 30, 40],
which in turn allows to determine the best (i.e., most interesting or
informative) positions in the virtual scene [40], adjust travel speed
[17], create and improve camera paths through the scene [2, 19], and
can be used in image-based modeling [40]. In addition, visibility
information can be used to find regions of relative homogeneity—
regions where the visible parts of the scene are similar or share a set
of visible geometry [11, 22, 35]—or for identifying landmarks that
are visible throughout a large area.

However, determining visibility is computationally expensive. Of-
ten, it is done by rendering an image or a cubemap from the desired
position using an item buffer, where each entity—e.g., triangle or
object—is drawn in a different color [3, 16, 40]. If this has to be
performed in each frame, the additional render pass often causes sig-
nificant computational overhead. On the other hand, while visibilities
usually differ only slightly between spatially close points—except
as a result of discontinuities like walls—and can therefore be ap-
proximated effectively by interpolating between points computed
in advance, sampling an entire 3D scene with sufficient resolution
requires an expensive precomputation step and significant memory
consumption at runtime. However, for most applications, visibility
information only has to be available at locations accessible to the user,
which in many realistic applications that use ground-based navigation
interfaces is typically in walkable areas.

Therefore, in this paper, we present an approach to computing
and storing visibility information for virtual scenes above naviga-
ble surfaces that usually requires only inexpensive precomputation,
and manageable memory consumption at runtime. Furthermore, we
evaluate its performance and accuracy using different virtual scenes.
Moreover, we demonstrate its viability for several applications, in-
cluding automatic landmark and room detection and an exploration
assistance interface, in addition to a novel travel interface that we
evaluated in a user study.

The rest of the paper is structured as follows. In section 2, we
give an overview of related work regarding visibility computation.
We describe our method in section 3 and evaluate its performance in
section 4. Section 5 describes the proposed assisted travel interface,
followed by further applications in section 6. In section 7, we then
discuss limitations of the approach, before we conclude the paper in
section 8 and give a short outlook on future work.

2 RELATED WORK

Scene visibility computation has various important applications. One
example is occlusion culling, the process of discarding occluded sur-
faces to speed up the rendering process. Pre-computing a conservative
estimation of visibility—a potentially visible set (PVS) [1, 36]—can
often significantly reduce the amount of geometry to consider when
rendering. Exploiting properties of the virtual environment can lead
to further optimizations. For example, the structure of many archi-
tectural scenes is mapped in cell-and-portal graphs that represent
cells that share a PVS (rooms) linked by portals (doors or windows)
[22, 35], while the structure of terrains allows optimizations such
as the computation of horizons [10]. An overview over methods to
compute visibility information for occlusion culling and terrains can
be found in [9] and [14]. However, while PVS-based approaches



allow to discard geometry that is certainly invisible due to their con-
servative approximation, they do not capture how well certain parts
of the environment are visible, nor can reliably indicate if they are
visible at all. In contrast, exact visibility sets have been used, e.g., in
a voxel-based approach for guided tours that divides the space regard-
ing the visibility of landmarks [11]. However, this is only efficient for
very few landmarks due to the potentially exponential number of sets
and does not reflect how well each landmark is visible.

In contrast, the computation of viewpoint quality requires an accu-
rate approximation of the visibility of all scene entities. The visibility
of polygons and objects can, for example, be computed on the CPU
by sampling the scene using raycasting [19]. Furthermore, vertex
visibility for a set of viewpoints arranged in a regular grid can be
approximated using a reverse formulation, and projecting the geom-
etry as seen from the vertex onto the grid [32]. However, due to
its good performance, the most common approach to approximate
visibility in geometry-based scenes uses the GPU, rendering each
entity in the scene (e.g., triangles [2, 3, 12, 16, 28, 30, 39], objects
[16, 24], vertices [16] or domain-specific entities like atoms and
bonds in molecular visualization [41] or residue features in protein
structures [18]) into an item buffer and summing up each contribution.
For volume rendering, the visibility of voxels has been computed by
raycasting due to the massive transparency used [5, 7]. An alternative
approach uses the aforementioned geometry-based GPU approach on
isosurfaces extracted from a scalar field [33].

In all of these approaches, the visibility information is not stored,
but only used to compute, e.g., a scalar viewpoint quality value for
each position of a regular sampling within or around the scene, which
requires new computations when, e.g., the importance of entities
changes. In contrast, we aim at efficiently computing and storing
visibility information even for large scenes, to use them for differ-
ent applications such as viewpoint quality, landmark detection, and
different travel interfaces.

3 VISIBILITY COMPUTATION

The visibility of the scene from a position can be represented by a
visibility histogram a = (a1,...,an) with ∑iai = 1, where the bin ai
represents the visual size of the i-th entity (e.g., triangle or object)
in the scene, i.e., its area when projected onto a sphere around that
position, relative to the surface of that sphere [2, 16]. Visibility
histograms can be approximated well by rendering a cubemap of the
scene from the viewpoint, drawing each entity in a different color
(using an item buffer), before counting the pixel area of each entity.
To correct for perspective distortion, the pixel areas are weighted by
their subtended solid angle (similar to [2, 16]).

Although this is computed efficiently on the GPU and a limited
render resolution is usually sufficient, the process often takes several
milliseconds, which can be too long for many applications. However,
between close points, the visibility usually differs only slightly (unless
there is a discontinuity, such as an obstacle, between them). Therefore,
good approximations can be achieved by sampling the space and
storing a visibility histogram at each sample point, then obtain the
visibility for new points by interpolation. As most of a scene is usually
invisible from most viewpoints, most visibility histograms are sparse
and can be stored efficiently (cf. section 4.4).

3.1 Storing and Accessing Visibility Information
As fundamental entity, we use objects instead of geometric primitives
for two reasons. First, there are usually significantly fewer objects
than geometric primitives in a scene, leading to a considerably smaller
memory footprint to store each histogram. Second, objects are seman-
tically more expressive than vertices or triangles—they are typically
the entities a user perceives, such that the question of whether a certain
object is visible from some location is probably more meaningful
than for a certain triangle. As it is usually infeasible to specify the
scene’s objects manually, we determine objects automatically, using

Figure 1: A navigation mesh produced by the open-source toolset
Recast, overlayed on a countryside scene.

the object definition from [16], where each lowest-level geometry
of the scene model is interpreted as a separate object. However, we
extend this definition by additionally splitting object meshes into their
connected components and considering each a separate object. The
reason for this is that mesh parts with the same material across the
scene are often stored as a single geometry to improve storage and
rendering efficiency, and would otherwise be treated as a single large
object.

Note that this definition does not necessarily correspond to a human
observer’s perception of an object—in fact, many of the resulting ob-
jects would probably be considered parts of objects. However, group-
ing in human perception is not unambiguous and highly subjective,
and we found this definition to provide reasonable results. Further-
more, our method only requires that there is any object definition—all
methods described in the following can be used equally well with
any other object or entity definition, manually defined objects, or
polygons, although storing polygon visibility would require more
memory.

The simplest way to sample and store visibility information is prob-
ably in a regular 3D grid throughout the bounding box of the scene.
However, this will include many points at locations inaccessible to
users, such as inside walls, below the ground, or, if ground-based
navigation is used, way above the surface. Furthermore, this method
is insensitive to discontinuities, resulting in high errors when interpo-
lating between points on opposite sides of walls or obstacles. If the
height of the ground is uniform and known, it is often possible to use
a 2D grid at a fixed height instead (e.g., [16, 17]). However, walls and
obstacles will still lead to interpolation errors.

Therefore, in our approach, we use navigation meshes (also called
navmeshes) as underlying data structure to sample the scene. Nav-
igation meshes [31] represent an approximation of the navigable
surface of a virtual scene as a polygonal mesh (cf. Fig. 1), and are
commonly used for automated pathfinding of autonomous agents
through navigable areas of a 3D scene. A convenient property of
navmeshes for our purpose is that, in addition to representing the
regions most accessible to users in many applications, they implicitly
encode obstacles. Although navmeshes can be created manually, they
can also be efficiently generated automatically, and are widely used
as the standard solution for automated pathfinding in many game
engines and authoring platforms such as Unreal Engine or Unity3D.
Most approaches allow to define the agent height and radius as a
convenient measure of the user’s space requirements and minimum
distance from obstacles, as well as the maximum slope considered
navigable. For this work, we used the open-source toolset Recast1 to
generate navmeshes (which is also included in the Unreal Engine), as
it is freely available and provides good results.

1https://github.com/recastnavigation/recastnavigation
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Figure 2: Determination of a visibility histogram. For a query position
px, a point qx on the navmesh is found, and its associated visibility
histogram (computed for viewer position vx) is returned.

Our approach uses the vertices of the navmesh—more precisely,
points at agent height above the navmesh—as sample points for com-
puting the visibility information. This is advantageous, as the vertices
of the navmesh are placed at locations where the navigable surface
changes direction or shape, for example, at corners or obstacles.
These locations often coincide with places where visibility changes,
for example due to reaching the end of a wall or obstacle, making
them good positions for sample points. In addition, there are never
any obstacles between any point on a polygon of the navmesh and its
vertices. Therefore, an interpolation on the polygon face will never
go through walls, avoiding large interpolation errors in most cases.

To determine a visibility histogram for an observer position p, the
following steps are performed:

1. Try to project p vertically down onto point q on the navmesh.
2. If q exists:

(a) If distance(p,q)≤agent height (Fig. 2, p1):
i. p is in a navigable area. Compute the visibility his-

togram for q by linearly interpolating the visibility
histograms associated with the three vertices of the
navmesh triangle containing q, using its barycentric
coordinates to weight each contribution.

(b) Else: perform an intersection test with the scene geometry
to check for obstacles between p and q.

i. No obstacles (Fig. 2, p2): p is a tall observer or flying
above the scene. Return interpolated histogram at q.

ii. Obstacles: p is close to an obstacle (Fig. 2, p3), above
a non-navigable obstacle (Fig. 2, p4) or outside the
scene. Find the point q on the navmesh closest to, but
below p and return interpolated histogram at q.

Note that in 2(b)(ii), we have to find q below p, as navmesh parts
above p represent navigable surfaces above (e.g., the next floor above,
cf. Fig. 2), and therefore typically very different visibility. However,
this does not ensure that interpolations through obstacles are avoided,
and can lead to similar interpolation errors as when sampling, e.g.,
along a regular 3D grid. Alternatively, if visibility information is
requested for a user moving through the scene who left the navmesh
only temporarily, the last valid histogram can simply be retained.
However, if the information has to be reliable, no histogram should be
computed at all to reflect that no reliable approximation can be made.

3.2 Navmesh Refinement
While navmesh vertices are often placed at positions where the visibil-
ity changes, they may be far apart, reducing the accuracy of the inter-
polation. Furthermore, visibilities may differ significantly between
adjacent vertices, especially between positions close to an obstacle or
wall (that takes up much of the view) and positions a little farther away.

Therefore, our approach refines the navmesh whenever visibility
information at neighboring vertices differs too much. For each edge
of the navmesh, we compute the histogram intersection HI(a,b)=
∑imin(ai,bi)∈ [0,1] of the (individually normalized) visibility his-
tograms a and b of its vertices. If the refinement criterion HI(a,b)<θ

Figure 3: When the visibility histograms at the vertices of an edge differ
too much, the navmesh is refined by performing an edge split.

for some threshold θ ∈ [0,1) is met, an edge split is performed by in-
serting a new vertex at the edge’s midpoint (see Fig. 3), and computing
the visibility histogram for the new position. This process is repeated
iteratively until no edge fulfilling the refinement criterion is left.

An advantage of using the histogram intersection as refinement
criterion is its clear interpretability. For example, if HI(a,b)=0, then
the positions with the visibility histograms a and b see completely dif-
ferent objects. If HI(a,b)=0.5, half of each field of view is taken up
by the same objects, while the other half is different, etc. For measure-
ments regarding the effects of different thresholds θ , see section 4.

3.3 Online Computation and Parallelization
To avoid a precomputation step, the visibility information can also
be computed online. We do this in a separate thread, independent
of the main application thread, using the glfw library2 for OpenGL.
By prioritizing positions close to the user, visibility information can
always be provided for the user’s location, as long as they do not
move too fast. Note that computing visibilities for the complete scene
online usually takes significantly longer, depending on the GPU load
of the main application.

Furthermore, as all visibility computations are independent of
each other, the computation process can be parallelized trivially for
multi-GPU and cluster setups, such as many powerwall or CAVE
installations. Measurements of the speedup we achieved are summa-
rized in section 4.4.

4 EVALUATION

In this section, we show and evaluate the results of our method de-
scribed in section 3, measuring its accuracy and performance on
different scenes.

4.1 Scenes
We tested our method on 8 different realistic scenes that cover different
types of environments (e.g., indoor/outdoor, single-floor/multistory)
and different complexities:

• countryside: A large, sparse outdoor scene
• city: A low-detail city generated automatically using the Esri

CityEngine3

• house1: A highly detailed house with small garden and patio
• house2: A highly detailed small house
• office: A large office floor
• bookstore: A large, single-floor bookstore with a small café
• office buildings: Two large, low-detail multi-story office build-

ings in a small, park-like outdoor area
• campus: A university campus, with one of the lecture buildings

modeled in detail and walkable
Characteristic information about each scene is summarized in

Table 1, screenshots of some of the scenes are shown in Figure 4.
All navmeshes were generated using Recast with the following set-
tings: agent height=1.5 m, agent radius=0.1 m, maximum slope=45◦,
cell size=0.1 m (city and countryside: cell size=0.5 m, campus: cell
size=0.2 m, due to larger scene size). For all visibility computations,
we used an eye height of 1.5 m above the navmesh, and a resolution
of 256×256 pixels for each side of the cube map.

2www.glfw.org
3www.esri.com/software/cityengine



Figure 4: Screenshots of some of the scenes used in our evaluation. Left: countryside, Center: city, Right: bookstore.

Table 1: Characteristic information of the scenes used in the evaluation.

Scene Navmesh
Name Type Bounding Box #Triangles #Objects Layered #Vertices #Triangles
countryside outdoor 498×500×90 1,874,237 34,420 No 13,730 20,502
city outdoor 901×910×322 73,259 4,728 Yes* 25,590 20,606
house1 indoor 20×15×5 2,377,158 1,121 Yes* 301 383
house2 indoor 11×14×5 429,557 3,123 Yes* 103 120
office indoor 46×31×6 3,147,964 3,296 No 778 771
bookstore indoor 42×49×7 1,268,120 22,250 Yes* 628 727
office buildings mixed 125×75×21 188,262 1,231 Yes 3,123 3,597
campus mixed 390×392×45 1,135,843 63,373 Yes 6,840 9,362

* Scene includes building tops representing navigable areas

4.2 Accuracy and Refinement
We measured the average approximation accuracy of our method
on all scenes as a function of the refinement threshold θ . The ap-
proximation accuracy for a certain position is given as the histogram
intersection of the actual and the interpolated visibility histograms at
that position. For each scene and refinement threshold, we randomly
sampled 10,000 positions in the navigable area of the scene, measured
their accuracy, and averaged over all values.

The accuracy results, along with the increase in the number of visi-
bility histograms to be computed, are summarized in Figure 5. While
the necessary refinement threshold to reach a certain approximation
accuracy varies across scenes, most already provide an arguably high
accuracy without refinement due to the structure of the navmesh (ex-
cept for the city scene). Furthermore, on all scenes but the city, an accu-
racy of more than 0.9 is reached at θ =0.65, while requiring visibility
computations for less than 50% additional positions. At θ =0.8, the
average accuracy is arguably very high, at about 0.95 or above (except
city with 0.894), so we use this threshold throughout the rest of the pa-
per. However, in real applications, the threshold can also be raised iter-
atively, stopping after a certain time or number of computed positions.

4.3 Comparison
We compared the average approximation accuracy of our approach
to that of a regular, uniform 3D grid with a similar number of sample
points. We always chose θ =0.8 as refinement threshold, and selected
the 3D grid resolution in a way that the resulting number of sample
points was about the same. For each scene, we randomly sampled
both 10,000 positions in the navigable area of the scene and 10,000
positions within its bounding box, and averaged the approximation
accuracy for each.

The results are summarized in Table 2. It is evident that our ap-
proach is superior when providing visibility information in navigable
areas, while the regular 3D grid provides better interpolation results
for arbitrary positions on average. However, in large scenes, the aver-
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Figure 5: The average approximation accuracy (left) and the factor
of increase of the total number of computed visibility histograms (right)
for each tested scene as a function of the refinement threshold θ .

age is dominated by “flying positions” high above the ground, where
the visibility changes with low frequency, making low sampling feasi-
ble. For example, in the campus scene, from the vast majority of view-
points, only a few very large low-detail buildings are visible, while the
volume of building interior modeled in detail makes up only 0.2% of
the scene. In addition, note that although the 3D sampling sometimes
incorrectly assumes objects to be visible that are on the other side of
a wall due to interpolation, the effect of this on the average accuracy
is limited, as the majority of query positions are in open space.

A simple method to improve accuracy across the whole scene is to
combine both methods, using our approach for (often highly detailed)
navigable areas, while a low-resolution 3D sampling of the scene
might suffice in areas way above the surface.



Table 2: Average accuracy of our approach compared to sampling
along a regular 3D grid. AccN specifies accuracy results for a random
sampling in the navigable areas of the scene, Acc3D within the scene’s
bounding box. For both samplings, the higher value is marked in bold.

Our approach Regular 3D grid
Name #Points AccN Acc3D Grid #Points AccN Acc3D
countryside 22,774 0.975 0.691 9.81 22,950 0.752 0.878
city 151,244 0.894 0.361 11.94 153,900 0.171 0.629
house1 576 0.981 0.667 1.27 576 0.649 0.814
house2 237 0.969 0.511 1.39 240 0.463 0.681
office 1,541 0.948 0.519 1.66 1,596 0.919 0.854
bookstore 2,085 0.966 0.765 1.69 2,088 0.688 0.775
office buildings 10,847 0.956 0.782 2.66 10,904 0.804 0.891
campus 20,157 0.946 0.477 26.68 20,230 0.462 0.978

Table 3: Average time to complete the precomputation for our method
(θ =0.8) on a single-GPU workstation, and memory required to store
the resulting visibility information and navmesh structure.

Scene #Points Per point Complete Memory
countryside 22,774 8.8 ms 201.1 s 183.6 MB
city 151,244 8.4 ms 1,276.6 s 125.7 MB
house1 576 10.8 ms 6.2 s 0.6 MB
house2 237 7.3 ms 1.7 s 0.7 MB
office 1,541 10.7 ms 16.6 s 1.2 MB
bookstore 2,085 9.0 ms 18.8 s 29.1 MB
office buildings 10,847 7.0 ms 76.9 s 11.3 MB
campus 20,157 9.5 ms 191.4 s 199.9 MB

Table 4: Performance and speedup achieved when computing visibili-
ties using typical VR cluster configurations (countryside scene).

Setup Single node Cluster Speedup
Powerwall, 2 nodes∗ 299.1 s 159.5 s 1.9
Powerwall, 6 nodes† 184.5 s 38.6 s 4.8
CAVE, 49 nodes∗ 300.2 s 19.1 s 15.7
∗ Intel Xeon X7550 @ 2 GHz, NVIDIA Quadro 6000
† Intel Xeon E5-1620 @ 3.7 GHz, NVIDIA GeForce GTX 780 Ti

4.4 Performance
We measured the time to complete the precomputation necessary
for our method (using θ = 0.8) on a typical workstation machine
equipped with an Intel Xeon E3-1225 3.2 GHz Dual-Core processor
and an NVIDIA GeForce GTX 1070 GPU, running Windows 7, by
averaging over 10 identical runs. The results, including memory
consumption, are summarized in Table 3. For most scenes—with the
exception of the city scene that requires many sample points due to
its large size and high occlusion—the complete computation takes
less than 3.5 minutes, and has to be performed only once. Note that
although the scenes vary significantly in geometric complexity, the
average time to compute the visibility at each point is similar, mainly
due to optimizations such as frustum culling, and constant contribu-
tions, such as reading the frame buffer. The memory requirements
consist mainly of the sparsely stored visibility histograms, each re-
quiring 8 bytes for each visible object (32 bit for each visible object’s
index and 32 bit for its visibility—note that to save memory, in many
cases, 16 bit for the index and a 16 bit half-precision floating-point
number for the visibility would suffice).

Furthermore, we measured the performance in three multi-GPU
cluster setups: a 2-node and a 6-node powerwall, and a 49-node CAVE
setup, all running CentOS 7. The times to complete the necessary pre-
computation for each setup (simply distributing the workload between
nodes evenly), as well as the speedup achieved, are listed in Table 4.
For conciseness, we only report results on the countryside scene, as
it is large both regarding geometric complexity and actual size.
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Figure 6: Starting from the red dot, the end of the region of common
visibility (green dot) is found by sampling points at navmesh edges,
then doing binary search on the final navmesh triangle.

5 ASSISTED TRAVEL BASED ON COMMON VISIBILITY

Especially in larger virtual environments, detail is often not distributed
evenly throughout the scene, such that users often have to travel
through less interesting areas. If a steering-based travel technique
is used, this either leads to longer travel times, or the necessity to
increase the travel speed in these areas. However, manual speed
changes require the user to control an additional parameter (e.g., via
a menu), potentially increasing cognitive load and error rates [17].
Therefore, several methods to adapt the travel speed automatically
have been proposed, often based on the distance to the environment
[23, 34, 37, 42]. However, for ground-based navigation, the distance
to the scene geometry is largely constant, such that these methods
cannot be used. As an alternative, choosing the speed inversely
proportional to the local viewpoint quality has been suggested [17],
but may lead to speed changes intransparent to the user. Furthermore,
faster speeds are in general harder for the user to control, and may
lead to errors (e.g., traveling too far) or cybersickness due to frequent
direction changes caused by inaccurate steering or swaying.

Therefore, we propose an alternative travel approach, based on the
observation that segments of a path where the environment changes
only slightly (e.g., in low-detail regions, or in open areas far away from
most objects) are often the ones that users want to pass quickly. These
can be determined by finding regions of common visibility, i.e., areas
throughout which the visible parts of the scene are similar. When such
a region is encountered, the proposed interface suggests to quickly
move through it along a straight line, to avoid errors and changes in
direction and acceleration that may cause cybersickness [21].

5.1 Method
We define the region of common visibility for a position p with
visibility histogram vp to be comprised of all positions q where half
of the visible parts of the scene is identical to p, i.e., all points with
visibility histogram vq where HI(vp,vq)≥0.5.

The proposed interface is based on a simple ground-based steering-
by-pointing travel technique, where the user points in the desired
travel direction using an ART Flystick 2 or a similar device. The
joystick on top of the Flystick is moved forward to seamlessly con-
trol the movement speed in that direction along the ground surface.
Whenever the user is traveling with the maximum speed, the system
tries to find a travel target candidate by computing the boundary of the
current position’s region of common visibility in movement direction.
To do this, the visibility histograms are sampled in that direction at
every navmesh edge until the histogram intersection with the current
position drops below 0.5 (cf. Fig. 6). The target position is subse-
quently refined to find the exact position where the intersection is
0.5, by doing a binary search on the corresponding navmesh triangle.
Alternatively, when the outer edge of the navmesh is reached, sam-
pling is also stopped and the position 1 m before the edge is selected
as target position.

Next, the system calculates the minimum speed necessary to reach
the target within a time of tmax (we use tmax = 2 s), out of a set of
discrete speed levels. We chose discrete levels to make differences
between speeds noticeable, to give the user a sense of the distance



Figure 7: Visual feedback for a target suggestion in the countryside
(left) and city scene (right), indicating low (left) and high (right) speed
and distance to the target.

covered during automated movement. If traveling directly with this
speed saves time compared to normal steering (our implementation
requires saving at least 2 s), a suggestion is made, visually illustrating
the path to the proposed target using an arrow on the ground leading
to a gate at the end (see Fig. 7). The arrow is colored depending on
the speed level, to give the user an indication of the speed and the
distance to the target.

When the user presses a button, the suggestion is accepted and the
user is transported to the target along a straight line (but restricted to
the ground). The motion can also be aborted by pressing the button
again. Note that a button already reserved for other interaction (e.g.,
selection or menus) can be used, as most interaction is usually not
performed while traveling.

The suggestion is updated regularly, using a rather high update
rate of 4 Hz determined in pilot tests. When the new suggested target
position differs by a visual angle of less than 5◦ and a distance of at
most 10 m, the target is continuously moved there in a straight line
to reduce user errors, while otherwise jumping to the new position
instantly to avoid delays.

Furthermore, some steps are performed to improve the suggested
targets. Very large or close objects have a large visual size, and cor-
respondingly large entries in the visibility histogram. A consequence
of this is that the histogram intersection between visibility histograms
of, for example, a point close to a wall and one a little farther away
is relatively low, even though the visual size of almost all visible
objects—except for the wall—changes only very little. To prevent
these objects from dominating the determination of common visibility
regions, we cap the visual size at 0.025 (corresponding to about the
size of a door at a distance of 2.5 m), distributing the excess on all
other objects proportionally to their respective visual size. The effect
on the resulting common visibility region is illustrated in Figure 8.
Note that this procedure is relatively robust with respect to the cap
used—in our tests, values between 0.01 and 0.1 led to similar results.

Furthermore, the target position is corrected along the movement
direction based on a viewpoint quality measure. As the runtime of
viewpoint quality estimation methods is usually clearly dominated
by the determination of visibility, it can be computed very efficiently
from a visibility histogram if the method is based on the same entities
(e.g., objects). We used object area entropy [16] to measure quality
and select the position with the highest viewpoint quality within
±40% of the initially computed distance along the indicated direction
as target. This is done for two reasons. First, target locations with a
higher viewpoint quality are typically more favorable targets, both for

Figure 8: Regions of common visibility in the city scene, computed for
the central yellow position, with (cyan) and without (red) capping of the
visual size of each object.

viewing the environment (more informative view) and for subsequent
travel (e.g., most points very close to objects have a lower quality due
to one object dominating the view). Second, this correction improves
the stability of the target position, which is moved less frequently
while the user travels forward.

Especially in hilly terrain, the direction of movement is changed
often when using ground-based travel due to changes in slope, which
we found to contribute to cybersickness. Therefore, we simplify the
path to the target by allowing slight deviations from the ground. To
this end, we apply the Ramer-Douglas-Peucker curve simplification
algorithm [29] to the (piecewise linear) path, removing vertices that
change the path only slightly, allowing for a maximum deviation of
the user’s feet of 2 m above or 0.5 m below the ground. We found in
pilot tests, and were confirmed of this in our user study (section 5.2),
that most users do not notice that their feet leave the ground within
this range when traveling to the target.

5.2 User Study
We tested the proposed travel interface (A) in a user study against a
ground-based point-and-fly method (also using the Flystick) where
the maximum travel speed could be changed manually using a menu
(M). We used this manual approach as comparison as its interaction is
very similar to A, except that the speed changes performed automati-
cally through suggestions are replaced with manual changes. Similar
to manual steering in A, when a faster speed is chosen in M, the user
can still control the speed continuously through the joystick on the
Flystick. After pilot testing, we chose the speed levels of 2 m/s, 8 m/s,
24 m/s and 48 m/s for both travel techniques, where in A, 2 m/s was
used for manual steering, and the faster speed levels for automated
travel. To compute viewpoint quality, we used the object area entropy
method [16].

For the study task, we tried to imitate a realistic scenario, where
users had to travel medium distances in order to perform some local
task at the target. We were mainly interested in whether using A
makes travel easier or harder, if it can reduce cybersickness, and
whether the automated travel has an impact on spatial orientation.

The study was conducted in a 5-sided CAVE system (no ceiling,
5.25 m×5.25 m floor area, 60 Hz optical tracking, 60 Hz refresh rate).
It consisted of six phases, one training phase for each travel technique,
and one trial for each technique on each of the city and countryside
scenes. In the beginning, participants were thoroughly informed
about both travel techniques and the study procedure, and filled out
Kennedy’s simulator sickness questionnaire (SSQ) [20]. Then, they
entered the CAVE and performed the first training, practicing the
travel technique in a training scene until they felt comfortable using
it, before starting the first trial with the same technique. Afterwards,
the second training phase with the second travel technique began,
followed by the second trial on the same scene, and the third and fourth
trial on the second scene. Then, participants left the CAVE and filled
out Kennedy’s SSQ again, in addition to a questionnaire comparing
both techniques regarding efficiency, precision, cybersickness, ease
of use and overall preference.



During each trial, participants had to travel to 5 houses distributed
throughout the scene by following signposts, and perform a simple
search task in each house. Both trials on the same scene used the same
travel path, except that one of them was reversed. In the house, they
had to find a certain object (e.g., a fire extinguisher or soccer ball) and
“touch” it with the Flystick, before leaving the house again to receive
instructions which house and object to find next. The search task was
kept intentionally easy, as it was mainly meant to be a break from
medium distance travel. All instructions were always displayed on
large billboards placed in the virtual scene.

Whenever participants reached a house, they would be asked to
point in the direction of the last house they visited, and the house they
started their journey at. Then, they indicated how they were feeling,
using a scale from 0 (indicating how they felt before the experiment) to
7 (indicating that they wanted to abort the experiment), similar to Fer-
nandes et al.’s discomfort score [13]. We used this simple indication of
cybersickness instead of, e.g., Kennedy’s SSQ, as we wanted to avoid
long interruptions during the study. However, we only evaluated the
last of these scores in each trial, as it is least affected by previous trials,
and used the others only to check on the participants’ well-being.

A trial ended when participants had found the object in the fifth
house, after which they could take a short break if they wanted (8
participants made use of this after the second trial, and 2 after each
trial). The total procedure took an average of 73 minutes, of which 43
minutes were spent in the CAVE (33 min. during trials, 5 min. during
training and 5 min. for loading).

In total, 35 unpaid individuals participated in the experiment (8
female, 27 male, aged 20 to 45, mean age 27.3). 9 were VR profes-
sionals, 13 had used a CAVE or HMD at least once before, and 13
were first-time users. 3 participants had to abort the experiment due
to cybersickness, leaving 32 sets of data to evaluate. We counter-
balanced the order of techniques, scenes, and whether the path was
reversed between participants (resulting in 8 different setups with
4 participants each). Furthermore, participants were balanced by
gender and previous experience (first-time user, repeated user, VR
professional) concerning the order of techniques and scenes.

5.2.1 Results

We analyzed the effects of the travel technique on different measure-
ments using independent-samples t-tests at the .05 level of signifi-
cance.

We found no significant effect on the mean time spent traveling be-
tween houses (M: 176.5 s per trial, SD=94.4 s; A: 199.5 s, SD=58.8 s,
p=.101), or during the search task (M: 110.5 s per trial, SD=42.7 s;
A: 104.3 s, SD=57.3 s, p=.488). Furthermore, there was no signifi-
cant difference in the distance covered between houses (M: 1819.4 m
per trial, SD=135.8 m; A: 1836.4 m, SD=206.8 m, p=.584) or dur-
ing the search task (M: 100.9 m per trial, SD=30.9 m; A: 96.8 m,
SD=36.2 m, p=.491). Moreover, there was no effect on the aver-
age error pointing to the last house (M: 19.5◦, SD=11.3◦; A: 20.8◦,
SD=13.2◦, p=.542) or to the first house (M: 43.4◦, SD=21.3◦; A:
44.5◦, SD=25.8◦, p=.798). However, we found a significant effect
on the discomfort score (M: 1.92, SD=1.8; A: 1.30, SD=1.4, p=.031).
The mean SSQ score was 11.2 (SD=14.8) before and 42.5 (SD=33.4)
after the experiment. We found a strong significant correlation be-
tween the discomfort score and the increase in SSQ score (r=.82,
p<.001), supporting the validity of this way of measuring discomfort.

Furthermore, we obtained results from the questionnaire where
participants compared both techniques regarding different properties
on a 7-point scale, choosing a value closer to 1 the more a statement
was true for M, and closer to 7 the more it was true for A. We analyzed
whether the median was different from the neutral value of 4 using
one-sample Wilcoxon signed-rank tests.

Participants perceived that they could reach their target faster using
M (3, IQR=[2,5], p=.014) and could also travel more precisely with
M (2, IQR=[1,3], p<.001). Furthermore, they found M easier to use

(3, IQR=[2,4], p=.019). The rating of which technique caused more
dizziness barely missed significance (3, IQR=[2,5], p=.057). Overall,
participants preferred M (2, IQR=[1,5], p<.001).

When examining the data based on VR experience or whether
participants were VR professionals, we did not find significantly
different tendencies, such that details are omitted here for brevity.

5.2.2 Discussion
The proposed method had a positive impact on cybersickness, as indi-
cated by the discomfort score results (questionnaire results pointed in
the same direction, but barely missed significance at p= .057). We
attribute this to the fact that users mainly moved in straight lines with
the method, did not do any curves, did not change the speed while
moving, and were less affected by the hilly terrain in the countryside
scene. However, some participants told us or wrote in comments that
the sudden stop upon reaching the target with A made them dizzy.
Unfortunately, there is no easy way to avoid this without introduc-
ing deceleration (which could again lead to sensory conflicts and
cybersickness) or discontinuities like teleportation.

Furthermore, we found no significant differences between A and
M regarding completion times, covered distance, or pointing errors,
which suggests that objectively, the proposed method performs simi-
larly well and does not introduce negative effects on spatial orientation
due to automated travel. This supports our assumption that the place-
ment of the target suggestions is generally good.

Nevertheless, participants preferred M, finding it easier to use and
more precise. This is probably due to participants feeling limited by
the choice made through the target suggestions, wanting to go farther
or not as far, or with a different speed. Furthermore, we observed anec-
dotally that participants would sometimes ignore a well-placed sug-
gestion while traveling, waiting for one that suited them better, espe-
cially when the suggested target was not as far away as they seemed to
expect. We suspect that participants construct mental waypoints that
they try to reach with the method, and are irritated when the system
suggests different waypoints. This might be alleviated by giving users
a better understanding of the method and more choice, e.g., by explic-
itly showing the edge of the region of common visibility as a semi-
transparent wall and possibly allowing them to choose between differ-
ent targets resulting from different thresholds of common visibility.

Finally, in the study, the participants’ decisions on where to go next
were not based on the environment and its structure, but mainly on the
inscriptions on signposts. However, an underlying assumption of the
proposed method is that users will usually change direction when the
visible parts of the scene change significantly, e.g., when reaching a
corner. While the method stopped reliably, e.g., at intersections in the
city scene (cf. Fig. 8), it largely ignored the signposts, failing to guide
users just close enough that they would be able to read it. Therefore,
we suspect the performance to be better in scenarios where users can
decide more freely where to go.

6 FURTHER APPLICATIONS

The availability of approximate visibility information throughout the
scene enables a wide range of applications. This section illustrates its
broad applicability by means of several further applications based on
visibility computation: the efficient calculation of a best set of view-
points (section 6.1), an exploration assistance interface (section 6.2),
landmark detection (section 6.3) and room detection (section 6.4).

6.1 Efficient Best Set of Views
While viewpoint quality can directly be used to determine the best
(most informative) location in a virtual environment, one position is
usually not enough to represent an entire scene. However, computing
an optimal set of n views [19, 24, 30, 40] with limited redundancy
between them, that best represents the scene, is not trivial—in fact, it
is NP-hard (related to the art gallery problem [26]). The most common
and simple method to approximate an optimal set is a greedy approach,



Figure 9: Assisted exploration of the office scene. Top: viewpoint
qualities computed using the object uniqueness method before (left)
and after (right) the user has moved along the indicated path through
the scene. Bottom: upon command, three portals to suggested target
locations (marked with a green dot in the map on the upper right) are
opened, allowing the user to step through to go there.

where iteratively the best viewpoint is added to the set and all parts of
the scene visible from there are subsequently ignored, until the set has
size n (e.g., [19, 40]). However, this requires the viewpoint quality of
all candidate points in the scene to be computed in each iteration. If
visibility information is available, both determining which parts of the
scene to subsequently ignore and recomputing viewpoint quality can
be performed efficiently at runtime. This allows best sets of views to
be computed interactively, which we used as a basis for an exploration
assistance interface (section 6.2).

6.2 Interactive Exploration Assistance
When visiting an unknown virtual environment, one of the first and
most important tasks is the exploration of the scene [6]. However,
during free exploration, important parts of the scene are often missed,
which can have a negative impact on spatial knowledge and sub-
sequent tasks. One approach that has been proposed for this are
virtual tours through the scene that ensure that no essential regions are
missed [2, 11]. However, the interactivity of virtual tours is limited,
and they usually do not allow the manual exploration of parts of the
environment.

As an alternative, we propose an interactive, “Show me what I’ve
missed” approach that keeps track of the parts of the scene the user
has already seen and suggests worthwhile travel targets on command.

In the beginning, each object is assigned a weight of 1.0, which
is reduced whenever the object is visible to the user. When the user
asks for support, a current best set of views (see section 6.1; we
use n=3 positions) is computed, taking into account the weight of
each object. Then, a virtual portal is opened to each of the target
locations (similar to [15] or [8]) that the user can step through to go
there, but also use to inspect the target in advance (see Fig 9, bottom).
The portals are placed in a half-circle in front of the user and, at the
target location, rotated in the direction with most free space. Note
that although virtual portals enable the user to look at each target
location before making their choice and reach it without inducing

cybersickness through virtual movement, the user does not learn the
way there. As an alternative, better spatial knowledge of the scene
may be obtained by letting the user choose one of the portals before
just displaying a route there for the user to follow.

In our prototype, the object weight is reduced linearly with time
and with how well it is visible from the user’s position (cf. Fig 9,
top), following the rationale that smaller or far-away objects should
warrant closer inspection. We use a weight reduction rate (per second)
of r=max

(
1

tmax
,

min(vis,vismax)
vismax·tmin

)
, where vis∈ [0,1] is the visual size of

the object, and tmin and tmax correspond to the minimum/maximum
time it should take to reduce the weight of a visible object to 0 (we
use tmin=3 s, tmax=15 s). Furthermore, we consider an object “well
visible” at a visual size of vismax = 0.001 (corresponding to about
the size of a postcard at a distance of 1 m), and reduce the weight of
objects of that size (or larger) to 0 in the minimum time of tmin.

Note that our method to determine visibility is non-directional,
while the user’s field of view is limited. Therefore, we tested an ap-
proach where only objects within a cone around the user’s view direc-
tion are considered visible, which we approximate based on the user’s
head position and orientation, the object’s center and its visual size.
However, pilot tests indicate that this tends to push users to closely
examine objects, suggesting locations visited before shortly but not
closely inspected, so we retained the non-directional approach. Never-
theless, this should be studied more thoroughly in a formal user study.

Furthermore, to avoid unhelpful suggestions after a scene has been
completely explored, only viewpoints where at least one visible object
retains a weight of at least 0.5 are considered for suggestion.

6.3 Automatic Landmark Detection
A user’s orientation in certain virtual environments can be improved
if landmarks are known to the system, for example by integrating
them in virtual maps or navigation interfaces [27]. Landmarks are
often objects or structures that can be seen from a large part of the
navigable areas of the scene, such as churches, towers, or mountains.
Furthermore, they are usually spatially compact relative to the area
they are visible from—e.g., while a large pasture is visible from a
large area, it is not normally regarded as a landmark, as this area is
typically the pasture itself and a small stretch around it.

Based on this observation, we developed a simple algorithm to
automatically detect n landmarks in a scene:

1. Find well visible objects: For each object in the scene, determine
the area from which it is visible. This can be approximated by
summing up the areas of all navmesh triangles where the object
is visible from all three vertex positions.

2. Restrict to spatially compact objects: Select the m objects vis-
ible from the largest area (where m should not be too large to
reduce computational cost) and determine their spatial com-
pactness. Perform a principal components analysis (PCA) each
on the vertices of the object, and on the vertices of the navmesh
from where it is visible, ignoring the vertical dimension, to
compute the two eigenvalues λa1,λa2 for the area and λo1,λo2
for the object. These represent the length of the eigenvectors of
the corresponding covariance matrices and are greater the more
distributed each set of vertices is in the direction of its eigenvec-
tors. We estimate the compactness as c= λa1·λa2

λo1·λo2
and only keep

objects with c>γ for a threshold γ (we use γ =10000).
3. Merge object parts: As several objects can belong to the same

landmark, spatially close landmark candidates are merged. For
this, we intersect the 2D bounding boxes of candidate objects
(ignoring the vertical dimension), and merge objects where the
intersection area is larger than half of the smaller bounding box.

4. Select final landmarks: Finally, the n landmark candidates that
are visible from the largest area are selected as landmarks.

The results of a run of the algorithm (with n= 3, m= 20) on the
countryside scene are illustrated in Figure 10. As the top 3 landmarks,



Figure 10: Results of the automatic landmark detection in the country-
side scene. The top 3 landmarks are marked in red, purple and cyan.

the tower, the windmill, and a large tree are identified (in that order),
where both tower and windmill consist of three objects each. This
seems a fair assessment, as there are arguably only two landmarks
in the scene (the tower and the windmill). The computation on our
workstation (see section 4) took 4.1 s.

Note that an additional property of landmarks is usually that they
are dissimilar to most other objects in the area. This could be inte-
grated by computing a uniqueness measure for each object (e.g., [16])
and discarding objects that are not unique enough (such as the tree).

6.4 Automatic Room Detection

Automatically obtaining information of the room structure of an
(indoor) environment is useful for different applications, such as con-
structing paths between rooms [2] or enhancing World-in-Miniatures
[4, 38]. The room structure can be represented as a cell-and-portal
graph [2, 4, 9, 38], where cells correspond to rooms and portals to
the connections between them. A notable approach to deriving the
structure automatically is based on a distance-field representation of
the scene to identify cells with approximately constant visibility [38].

We suggest an alternative approach directly based on the visibility
information obtained by our method (section 3). Similar to [38],
we assume rooms to be regions of common visibility, i.e., from all
positions within a room, a similar set of objects is visible. In addition,
we use a navmesh as basic structure, using the information about
navigable areas as starting point for the room detection.

We developed a simple prototype based on a region-growing pro-
cess that assigns navmesh vertices to rooms based on the similarity
of the visibility histograms at their positions. As in section 5, we cap
the visual size of objects at 0.025 to reduce a dominating influence of
large or close objects. Our prototype works as follows:

1. Create a new room by selecting a navmesh vertex not yet asso-
ciated with a room and assign it a new room ID

2. Perform region growing from this vertex until convergence:
2a. Compute the mean visibility histogram h̄ of the room by

averaging the visibility histograms of its vertices
2b. Compute the histogram similarity s between h̄ and the

visibility histograms of the room’s neighboring vertices
2c. Assign all neighboring vertices to the room whose visibil-

ity is similar enough to h̄ (we use s>0.5), and, if they are
currently assigned to a different room, are more similar
to h̄ than to the mean visibility histogram of that room

3. Repeat from 1 while there are unassigned vertices
4. Merge rooms: neighboring rooms whose mean visibility his-

tograms are similar enough (s>0.5) are combined
5. Assign triangles to rooms: for each navmesh triangle, assign

it one of the rooms associated with its vertices, by choosing
the one whose mean visibility histogram is most similar to the
visibility at the triangle center

Figure 11: Results of the room detection on the office scene, each
color corresponding to a different room.

The result of a run of this algorithm on the office scene, choosing
start vertices in step 1 randomly, is illustrated in Figure 11 (computed
in 0.12 s). Note that different rooms are correctly detected, although
the area in front of doors is often assigned to the room as well. Fur-
thermore, the corridor is split into several “rooms”, which may not be
desired. The result can be further improved, e.g., by choosing the start-
ing points of the region growing process more carefully. A limitation
of the algorithm is that it assumes rooms to contain at least some ob-
jects, and may fail, e.g., on scenes with only empty rooms and all walls
represented by a single object. However, this may be resolved by split-
ting large objects, again giving each room unique common visibility.

7 LIMITATIONS

Our approach focuses on the computation of scene visibility from
navigable parts of the virtual environment. This means that, although
the accuracy in these regions is high, non-navigable areas are not (or
less accurately) represented. While this is probably less of a concern
for locations within objects or below the ground, we cannot provide
accurate visibility information for locations reached by flying, which
is also a much-used category of travel metaphors. This could be
alleviated by extending the navigation mesh in the vertical dimension
in regions where flying is possible, e.g., by introducing “ghost planes”
above the ground that are included in the computation of the navmesh.
Depending on the application, a rough approximation achieved by
combining our approach with a low-resolution regular 3D sampling
of the environment may also suffice.

Furthermore, a general problem of interpolation approaches is the
possibility that changes at positions between sample points are not
correctly described by the interpolation. While the navmesh structure
captures changes due to close obstacles, and the refinement avoids
too much change between sample points, there are cases where these
changes may be missed. An example for these may be a window with
sample points to its left and right side, but not at a position directly in
front of it, from where it is possible to look through. Unfortunately,
there is no simple solution to reliably prevent such situations with-
out increasing the number of sample points significantly (similar to
aliasing problems when discretely sampling a continuous signal),
although we did not notice them in our test scenes.

Finally, our current approach can only deal with static scenes. Al-
though this is sufficient for a large number of use cases concerning
scenes that are predominantly unchanging (with dynamic elements
whose visibility is either less important or can be approximated other-
wise), significant accuracy problems may occur if the structure of the
navigable areas of the scene changes. While navigation meshes can be
updated—and regularly are in many pathfinding use cases to account
for dynamic obstacles—and the visibility for changed sample points
can be recomputed quickly during runtime (see section 3.3), it is not
trivial in the general case to decide which points have to be updated, as,
for example, a newly introduced object may be visible from far away.



8 CONCLUSION

We have presented a new approach for computing and storing ap-
proximate scene visibility based on navigation meshes, providing fast
results and good approximations in navigable areas of the environ-
ment. Furthermore, we demonstrated the usefulness of our approach
by means of different applications, including the fast (re-)computation
of viewpoint quality and best sets of views, landmark and room detec-
tion, an interface assisting exploration, and a travel technique shown
in a user study to result in less cybersickness.

In future work, we will focus on extending the method to efficiently
include regions reached by flying, in addition to ground-based travel.
Furthermore, we want to explore dynamic scenes, updating visibility
information especially in areas often changed through interaction,
such as opening or closing doors.
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