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ABSTRACT

While experiencing an immersive virtual environment a suitable
trigger metaphor is often needed, e.g. for the interaction with ob-
jects out of physical reach or system control. The BlowClick ap-
proach [35] that is based on non-verbal vocal input has been proven
to be a valuable trigger technique in previous work. However, its
original detection method is vulnerable to false positives and, thus,
is limited in its potential use. Therefore, we extended the existing
approach by adding machine learning methods to reliably classify
blowing events. We found a support vector machine with Gaussian
kernel performing the best with at least the same latency and more
precision than before. Furthermore, we added acoustic feedback to
the NV VI trigger, which increases the user’s confidence and whose
absence was also stated as a limitation of the previous work. With
this extended technique, we repeated the conducted Fitts’ law ex-
periment with 33 participants and could confirm that it is possible
to use NV VI as a reliable trigger as part of a hands-free point-and-
click interface. Furthermore, we tested reaction times to measure
the trigger’s performance without the influence of pointing and cal-
culated device throughputs to ensure comparability.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—[Voice 1/0] 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—[ Virtual reality] 1.2.6 [Arti-
ficial Intelligence]: Learning—Parameter Learning

1 INTRODUCTION

The degree of immersion in a virtual environment (VE) is highest
when the user just accesses the VE and interacts with it in the same
way as in reality, without the necessity to wear and use gear, often
referred to as “natural interaction”. Wearing special gear or hold-
ing controllers can negatively influence the immersion by somehow
making the user feel uncomfortable, i.e., being intrusive. This could
be the case due to different reasons, such as being heavy, cumber-
some, or just not supporting the intended interaction properly, e.g.,
by occupying the hands. Beyond simulating the reality, the user
simultaneously wants to benefit from the possibility to extend in-
teraction beyond what is possible in reality, for instance, the abil-
ity to select and interact with objects out of physical reach. One
major requirement for the implementation of such interactions is a
precise trigger. However, standard 6-DOF point-and-click devices
suffer from the fact that mechanical triggers can cause small device
movements when used, which then influences the pointing direction
given by the same device. This effect referred to as Heisenberg ef-
fect [1], potentially reduces accuracy and leads to errors. However,
without any gear or controllers it is difficult to perform a selection,
handle a menu, or trigger an event in general. Gesture and speech
recognition provide a possible replacement for this. Gesture recog-
nition has become more interesting because of recent improvements
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Figure 1: The idea of clicking induced by a non-verbal vocal input.

in the field of computer vision and defining dedicated trigger ges-
tures has been shown to basically work [7, 17, 26]. But especially
when defining a trigger, approaches in both recognition fields suffer
from high detection latency [13], since a gesture has to be finished
or a word has to be spoken to be detected correctly.

Sporka et al. [28] showed that users performed better with non-
verbal vocal input (NVVI) than with speech input when controlling
a Tetris game. Utilizing this, Zielasko et. al [35] proposed a proto-
type named BlowClick. In this method, blowing into a microphone
is used as NV VI to trigger a click (see Figure 1). The advantages
of blowing are proposed to be that a user can perform and finish it
very fast and the signal is easy to distinguish from normal speech.
To decide whether a click happened, the sum of amplitude in a short
signal frame (about 30ms) is calculated and compared to a given
threshold. The method was shown to be usable and is very easy
and fast to compute. However, it suffers from detecting other audio
events than blowing as a trigger, e.g., coughing, sneezing, or even
speaking very loudly (see Figure 2 for an example).

In this work, we extend the idea of BlowClick by adding suitable
machine learning methods to better distinguish blowing or other
suitable vocal inputs, from other audio signals, without losing its
low latency. We evaluate the improved detection mechanisms re-
garding their reliability and usability. Furthermore, we enrich the
feedback given to the user to strengthen her confidence about ac-
tions, which was another drawback of the realization of BlowClick
[35]. Finally, the user study design used in the related work is repli-
cated and extended under the changed feature set and gives even
more evidence for NVVI being a suitable trigger, alone and as part
of a hands-free point-and-click interface.

The paper is structured as follows. In Section 2 we discuss re-
lated work in the filed of NVVI and its classification. In Section 3,
two common machine learning methods are implemented to clas-
sify blow events more reliably and evaluated against the status quo.
Additionally, the results are presented and discussed. In Section 4,
an extended blow trigger is evaluated and the results are presented.
We discuss the overall results in Section 5 and finally draw a con-
clusion in Section 6.



2 RELATED WORK

First, we have to note that there is no natural interface or interaction
to trigger something distant, which usually holds for pointing-based
selection except, maybe, for throwing something at it. Thus, non-
verbal vocal input (NVVI) is one possibility to rely on for a task like
that and it is already very common in the field of accessible comput-
ing. A classic example is steering a wheelchair by zipping and puff-
ing [10]. However, the focus of those techniques often lies more on
feature-completeness than ease of use, i.e., they are often not easy
to learn. This is due to the circumstance that a rich space of poten-
tial interactions usually compensates the effort to learn, for lasting
motor-impaired people. Interfaces like that are the Whistling User
Interface (U3I) [24, 29], The Vocal Joystick [12], or the approach
designed by Chanjaradwichai et al. [6], which in these cases open
native desktop applications for disabled people. Another example
is called the Blowable User Interface (BLUI) [23]. In this interface,
the user can trigger a click by blowing into the direction of one out
of nine regular grid cells within the application displayed in front
of her. For this purpose, the recorded audio signals are classified
and assigned to one of the cells. There are some disadvantages of
this design that occur when considering it for regular use, starting
with the resolution of the distinguishable click positions. In ad-
dition, this resolution is not easily scalable as the current design
already requires a click confirmation due to uncertainty. Further-
more, the system is not portable, which would be desirable when
using it in an IVE, as a reliable microphone position is essential for
this method. Lastly, the classification algorithm has to be calibrated
for each user.

Igarashi et al. [15] first mentioned the potential use of an NVVI
interaction within an IVE. An application was a gestural interface
together with a blowing metaphor and bottles to create a virtual mu-
sic instrument [36]. Furthermore, this core concept was reduced to
a general clicking metaphor with BlowClick [35]. In this metaphor
the summed signal amplitude of a short time frame is used to make
a binary decision of the system’s trigger state, which is very fast
to compute. At the end, the method’s stake in the system’s latency
results nearly exclusively in waiting for the underlying signal frame
to reach a meaningful size (they used approximately 30ms). As the
signal’s classification is that easy or general, BlowClick works user-
independently, but is also vulnerable to false positives. A second
drawback of the approach’s actual implementation was the absence
of additional feedback, as a typical click sound of a physical mouse
that is often also modeled virtually. This potentially reduced the
method’s scores against a standard physical trigger input, which is
discussed in more detail in the corresponding work [35]. That raises
the idea to use the described idle time of BlowClick for a better clas-
sification, without increasing the total latency.

2.1 NVVI Classification

Today, there are many methods and approaches in the field of
speech recognition but the classification of non-verbal sounds or
features is not that densely covered. Furthermore, most work in
this field tries to classify a sequence as non-verbal to early discard
it for a speech recognition process.

All classifiers have in common that they do not operate on sound
signals but on features of the signal, which have to be extracted
first. Jarina and Olajec [18] experimented with various feature ex-
traction methods in the context of automatic applause detection and
found that Mel Frequency Cepstral Coefficients (MFCC) [21] per-
formed best. Uzkent et al. [33] successfully used MFCCs and Auto-
Correlation Functions (ACF).

As mentioned before, BLUI [23] uses NV VI classification, but
the aim is to map air pressure signatures to the direction somebody
is blowing in. For this purpose the authors decided to use a k-
Nearest Neighbor (KNN) classification [9]. In a study performed
by Cowling and Sitte [8] Learning Vector Quantization [20] out-
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Figure 2: Cutout of an audio time domain plot (signal amplitude over
time) from one of the recorded audio files. In the second row blowing
events are highlighted. The third and fourth row show cutouts of
the uppers, a) a blow event and b) a spoken word. It is easy to
recognize blow events on this scale, as the speaker obviously took
breaks before and after blowing.

performed a Multilayer Perceptron (MLP) [14] for NV VI classi-
fication. MLPs are supervised feed-forward neural networks with
one input, one output, and one or more hidden layers with computa-
tion nodes or hidden units. Wang et al. [34] developed an approach
to detect home environmental sounds such as coughing, laughing,
etc. utilizing a hybrid approach consisting of Support Vector Ma-
chines (SVM) and KNN, and reported that the results outperformed
Hidden Markov Model classifiers [25], which are widely used for
speech recognition. SVMs [30] are supervised classifiers that sep-
arate data points along a boundary given by supporting points so
that the empty space between the classes is as large as possible.
In the work of Uzkent et al. [33], SVMs with a Gaussian kernel
showed the best behavior in non-speech based classification, next
to SVMs with a linear kernel, Radial Basis Function (RBF) [3]
neural networks—a kind of MLPs— and KNN classifiers.

In summary, MFCC in feature extraction and SVMs in classifi-
cation have proven to work in diverse NV VI recognition settings,
what makes them the best candidates to be considered for blow de-
tection as well. However, there is no guarantee for success in our
setting, not only because the signal features of blowing could differ
from other NV VI, but even more as we are forced to consider much
smaller signal frames than usually in related work. We will have a
look on that in the following section.

3 BLOW CLASSIFICATION

We further rely on blowing as trigger metaphor due to its potential
signal uniqueness and inconspicuousness, i.e., the created air pres-
sure is usually not audible. The latter can be important regarding
the social acceptance of an interaction metaphor. Nevertheless, it is
important to note that other non-speech sounds, or even user depen-
dent and user preferred ones, are possible to use together with the
following methods. The need for a more specific classifier to detect
blowing is depicted in Figure 2. Here, the amplitudes of blow-
ing and spoken words do not really differ as assumed in [35], but
when having a deeper look on the micro scale other destructive fea-
tures appear that can be general characteristics and potentially dis-
tinguishable by machine learning. Nevertheless, note that the signal
structure immediately subsequent to the spoken word in Figure 2b
has the same “character”, as the blowing in 2a. This, furthermore,
illustrates the challenge.

To detect the blowing signature, we choose SVMs, as litera-
ture seems to show a good performance in non-speech classifica-
tion tasks in general. As blowing was not explicitly investigated
before in NV VI classification and neural nets are a common clas-
sifier in speech recognition, we cross-check the classification with
an MLP in the following. In both cases, the MFCC set, completed



Table 1: SVM parameter set

training dataset size 10543
number of features 14
cross validation 3-fold
optimized value for hyper-parameter C | 8
optimized value for hyper-parameter y | 3.05176¢ >
kernel type RBF kernel
number of support vectors 1847
training accuracy 99.3%
Table 2: MLP parameter set

training dataset size 10543

batch size 100

batch size 100

number of input layers (features) 14

hidden layer activation function ReLU

number of hidden units per hidden layers | 100
loss function at output layer sigmoid loss

momentum 0.9
weight decay 0.0005
solver mode CPU
[ training accuracy [ 99.27% ]

by the sum of signal amplitude—used by BlowClick—were used as
classification features.

3.1 Data Acquisition

To train and evaluate the classifiers, we collected 10 unsupervised
recorded audio files in .mp3 file format from 10 voluntary and un-
paid participants (see Figure 2 as an example). They were invited
via e-mail to randomly pick one out of 12 short texts in either En-
glish (9 participants, with 8 native speakers) or German and read
it out into a microphone. In advance, the sentences were randomly
prepared to contain short instructions to blow into the microphone
at a given point. On average, this was the case after 4.08 words,
with an average text length of 54.13 words. Additionally, the par-
ticipants were instructed not to create an artificially silent environ-
ment for the recording and were not instructed to blow or speak in
any special way. The recordings have a length of 40s on average
and were divided into training and testing corpora with a ratio of
3:2. After collecting the data it was divided into 20ms long, half
overlapping time frames, labeled manually as belonging to a blow
or not. In the previous work the underlying frames had a length of
30ms and we decided to shorten that time to have additional time
for the classification, without increasing the latency.

3.2 Implementation & Training

To realize the SVM, the common library LIBSVM [5] was used. The
parameters used are given in Table 1. For the MLP implementation
the Caffe deep learning framework [19] was used. The parame-
ters used are given in Table 2. Both classifiers were trained with
a dataset of size 10.543 and reached a training accuracy of 99.3%
(SVM) and 99.27% (MLP). The SVM was used together with an
(Gaussian) RBF kernel as they perform well in general as long as
speed is not an issue, which would then lead to a linear kernel.

3.3 Evaluation

For the evaluation, it was determined if the classification label for a
time frame corresponds to the manually assigned one. When they
differ it was counted as an error. This includes false positives, when
not blowing was detected as blowing, and false negatives, when
blowing was not labeled as blowing. The evaluation includes the
method used in BlowClick [35] as well. For the user study in the
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Figure 3: Accuracy of the test classification in percent, for MLP, SVM
and SSA with different thresholds for the sum of amplitude.

previous work, a threshold for the a sum of signal amplitude (SSA)
of 6.10% was used. We tested some additional parameters here, as
the initial tests revealed that this parameter does not work well in
general.

The results for different MF CC feature combinations are not re-
ported here, as there was no significant effect observable between
them. The SVM achieved the best results with 98.0% correct classi-
fication, followed by the SSA (93.3%, for the best matching thresh-
old 1%) and the MLP classification with 92.6% (see Figure 3). The
detailed classification results are depicted in Figure 4 as confusion
matrices. The calculation for one 20ms long sound frame took less
than 1ms for the SVM and less than 2ms for the MLP, both in-
cluding the computation of the MFCC features. The measurements
were performed on an Intel® Xeon® E5540 with 2.53GHz, 64 bit
and 12GB of RAM.

3.4 Discussion

One of the first things to note is that approximately 10% of the
frames are classified as blowing. Thus, a classifier that labels ev-
erything as not blowing already reaches an accuracy of 90%. This
happened with the 6%-SSA classifier. As shown in Figure 4, it de-
tected no false positives but only 1.2% of the blow frames. We
have two ideas why this classifier scored that badly here but seems
to provide useful results in the previous work. First, most if not
all training and testing files were recorded with very cheap micro-
phones, which additionally were not worn directly in front of the
mouth, resulting in smaller signal amplitudes. As this classifier
only takes the signal amplitude into account, it is obviously very
vulnerable regarding varying amplitudes. This hypothesis is sup-
ported by the fact that we found much better results for SSA with
lower amplitude thresholds having its peak at 1% (see Figure 4).
Here 97.2% of the blowing frames are correctly classified, but the
number of false negatives is elevated as well. This proportionality
seems to be unavoidable in an approach that is based on the am-
plitude alone. Second, a blow is always longer than 20ms and thus
a blow event is divided into several frames. Then again, only one
frame of a blow has to be classified to register the event. However,
in this case, other problems can occur. It is likely that the latency
is increased or one blow event translates into a tremor of clicks, but
it also means that the number of detected blows is proportionally
higher than the number of classified blow frames. Nevertheless, for
best performance and a reliable trigger for various applications, it
is necessary to detect a blow event from its first frame to its last,
without any interruption.

The MLP classifier performed comparable to the 1%-SSA. With
the training numbers in mind, we were surprised that MLP per-
formed so much worse then SVM. For cross-validation, we re-
moved a small part (about 30%) of each test data file and put it in
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Figure 4: Confusion matrix for the test classification of SVM, MLP
and SSA for 6% and 1% maximum amplitude. The matrices show,
in the upper row, the number of true negatives, number of false pos-
itives and false positive rate (fall-out); in the middle row, number of
false negatives, number of true positives and true positive rate (sen-
sitivity); and in the lower row, negative predictive value, positive pre-
dictive value and finally, accuracy.

the training-pool. This did not change the results for the MLP and
the accuracy of the SVM even dropped by 1%. In summary, MLPs
seem to work just worse then SVMs for NV VI recognition, which is
supported by related work (see section 2.1). This is consistent with
the general observation that SVMs work well with small datasets
and MLPs simultaneously tend to over-fit when trained with small
datasets. A surprising observation is that the error rate does not
change with training-data of the individual speaker. On the one
hand, this suggests that the SVM can be used out of the box, and on
the other hand it takes the possibility to improve the method’s ac-
curacy with additional speaker-specific training when there is time.
Both MLP and SVM took less time in total than the envisaged 30ms
for waiting on the frame buffer to get filled and the execution of the
classification process, which makes them usable in an interactive
application and additionally opens up the opportunity to even in-
crease the frame sizes depending on the total system latency. In
summary, SVM showed an overall good performance compared to
the other classifiers and, thus, is chosen for the following work.

4 USER STUDY

To validate the NV VI trigger using the SVM classification, we con-
ducted a user study to measure the core performance parameters
usability, speed and accuracy. Therefore, two different task designs
were used. For the first, the NV VI trigger was combined with a
pointing device to build a selection interface. Then, the selection
performance can be compared with a 6-DOF point-and-click de-
vice utilized as ground truth, in a Fitts’ Law task. Note that the
standard device could not be part of an hand-free interaction inter-
face. Second, the NV VI trigger is also compared as a stand-alone
trigger in the study.

In the following subsections, first the study’s implementation
details of the NVVI metaphor for clicking are described in Sec-
tion 4.1, followed by the used apparatus in Section 4.2. In the main
part, the experiment’s general procedure (see Section 4.3) with the
detailed task descriptions (see Section 4.3.1 & 4.3.2) is given. Then,
the subject population is described in Section 4.4. Finally, we make
our hypotheses in Section 4.5 and report the results in Section 4.6.

4.1 Method Implementation

In the following, we used an SVM for the classification of a blow
and rejected the other methods (see Section 3). The only thing
that changes in the process of the classification described in Sec-
tion 3 is that it works on uncompressed live audio frames instead of
recorded audio files. Again, every frame has a length of 20ms and
is half-overlapping with the last frame. The classification of frames
over time then is treated as a binary signal, which is the output of
our audio processing. This signal is wired to a selection input slot
of a virtual device in a widget framework [11]. The framework is
responsible for performing a click on every registered object with
focus, when there is a rising flank on the input slot, i.e., when the
current frame was labeled as blow and the one before not. This
is a fine detail in comparison to BlowClick, where a click was per-
formed with the falling flank. Nevertheless, as a result of this detail,
the target object in the previous study had to have focus the whole
time between raising and falling flank. Nevertheless, in the current
implementation, a new click is only fired with a raising flank, i.e.,
the signal had to fall back to its resting state before. Together with
every click a click-sound is played directly by the audio process.

4.2 Apparatus

The experimental part of the study took place in a 5-sided CAVE.
The participants stood in the middle of it-marked with a red dot
on the floor—facing the CAVEs back-wall in a distance of approx-
imately 2.6m. The dimension of the walls were 3.3m in height
and 5.3m in width. The participants wore tracked, active-shutter
stereo glasses to provide head-tracking and stereo vision. To cap-
ture acoustics, a Sennheiser EW G2 together with a Sennheiser
MES3 wireless microphone system was worn during the entire ex-
perimental part of the study, even when not used. Whenever the
participants were asked to use their dominant hand as a pointing de-
vice, it was tracked by a lightweight tracking target by ART, which
was attached to the hand by an elastic band (see Figure 6). Finally,
an ART Flystick2 was used as the standard 6-DOF point-and-click
device.

4.3 Procedure

At the beginning, all participants were asked to fill out a demo-
graphic questionnaire and carefully read a printed study description.
After this, every participant performed two interaction tasks in the
CAVE using difterent device conditions in a between-subjects ex-
perimental design regarding the acoustic feedback, i.e., half of the
participants were exposed to acoustic feedback for clicking (ac) and
half were not. The first task was a repetition of the Fitts’ law task
conducted in the BlowClick study [35] and is described in detail in
Section 4.3.1. As an addition to the previous study, a second task,
for measuring trigger reaction times, was added after each device
condition to measure differences between a classical button trigger
and the NV VI trigger without any context and, thus, other compo-
nents like pointing. The reaction task is described in more detail
in Section 4.3.2. When the participants got acoustic feedback for
clicking and selection it was added to all device conditions. The
experimental part of the study took approximately 20 minutes. We
did not want to exceed this time as it has been shown in tests and
previous work [35] that the effects of getting exhausted by holding
the flystick for pointing gets stronger and could have an unwanted
effect on the overall performance of the participants. Of course, this



Figure 5: Fitts’ Law task setup with task difficulty T3.

is an argument for using a light-weight alternative pointing device
in tasks like the described one, although this is not the effect that
should be measured here. Following the experimental part, every
participant was finally asked to fill out a System Usability Ques-
tionnaire (SUS) [2] for each of the 3 point-and-click device combi-
nations (see Figure 6) supplemented with a questionnaire regarding
relevant subjective measures such as perceived performance, ex-
haustion, etc.

4.3.1 Fitts’ Law Task

In this task we used a 3 x 4 x 21 within-subject design, including
3 device conditions utilized to solve 4 increasingly difficult Fitts’
Law tasks with 21 trails each. The task was designed according to
ISO 9241-400:2007 [16, 27] and the setting is shown in Figure 5. A
Fitts’ Law task does not quantify a trigger alone, but a selection and
thus requires a pointer. Therefore, the blow detection is combined
with the direction the user’s hand is pointing in, for the first device
condition BH (trigger = blow, pointer = hand, see Figure 6). The
second device combination is a 6-DOF point-and-click device, as it
is interesting how the first competes against a quasi standard. Here,
the surrogate for this device is a Flystick FF (trigger & pointer =
Flystick). In this combination it is not possible to assign any pos-
sibly observed effects to the method that is used to trigger, as the
pointing is different, too. Thus, a third bridging condition BF is
introduced. Here, the Flystick is used as a pointing device only and
the blow detection functionally replaces its trigger. The conditions
were provided in counter-balanced order, following a latin square
design.

The goal in a Fitts’ Law tasks is to select, i.e., point at a tar-
get and trigger a click, alternating targets on opposite sides as fast
as possible. In the given task, this had to happen 21 times for each
task difficulty (T1-T4). The targets are spheres and were positioned
in a circle of radius 0.75m. The participants were asked to rank ac-
curacy, for instance, not missing a sphere by accident, over speed.
They were shown a pointing ray, starting at the pointing device’s
position and given no advanced selection strategy, but simply ray-
casting. The spheres were rendered exactly on the projection sur-
face to exclude any potential effects of distance estimation [4] and
potential effects caused by varying distances to the selection target
[32]. The current target sphere was colored green, while all others
were white. When focused, the target sphere changed its color from
green to white. Finally, the sphere turned blue during the button
down phase of a click. In the acoustic feedback group, a successful
selection of a sphere was accompanied by a blub sound instead of
the usual click sound. The four task difficulties were designed by
changing the size, i.e., the target width for selection of the spheres.
The first task (T1) drew spheres of radius 0.1m, followed by T2
with 0.075m, T3 with 0.05m and finally T4 with 0.025m. The diffi-
culty of the last task was designed—following pilot tests—to provoke
errors from nearly all participants. Every task and subtask had to
be started with the first selection, which allowed to rest between

FF BF
r‘f ’ ?’f
Figure 6: The 3 tested device conditions from left to right, an ART
Flystick2 for clicking and pointing (FF), NVVI detection for clicking

and the Fystick2 for pointing, NVVI detection for clicking and an ART
hand target for pointing.

them. In the beginning of any device combination, the participants
had the opportunity to get familiar with the device and the selection
task within an easy and unrecorded training task.

In the Fitts’ Law task we measured the total number of clicks
needed to solve a task, the time between any selection and the pre-
cise position the target sphere was selected at, i.e., the position the
button down flank of the click was performed/registered at.

4.3.2 Reaction Time Task

In this task, the participants did not have to point, but only trigger
as quickly as possible as soon as a big sphere appeared in front of
them. The sphere disappeared after a click was performed. The
time range in between the trials was random and varied around 1s.
We measured the reaction times between sphere appearance and
trigger event. Due to technical issues during the session of some of
the participants it was only possible to record the first 17 trials for
them. To compensate this, we consulted only the first 17 trials of
any participant and session for the analysis.

4.4 Participants

33 volunteers (5 female and 28 male, ages M = 26.97 years,
SD = 3.56 years) finished the study. Additionally, two participants
canceled the experiment before its end and were not considered in
the analysis because of incomplete data. The first felt dizzy after
some time and the second one was physically not able to trigger
any click by blowing, i.e. the participant could not create enough
air pressure to record a sufficient acoustic signal. The participants
were compensated with free candy and drinks. All reported nor-
mal or corrected-to-normal vision. Asked for their prior experience
with 3D user interfaces, 7 answered that they had contact on a reg-
ular basis, 13 reported that they used a 3D user interface before and
13 answered to had no experience at all or do not know what a 3D
user interface is. Additionally, 5 out of 33 participants reported to
have never used any stereo display system—including 3D cinema—or
head tracking.

4.5 Hypotheses

We formulate the following hypotheses regarding the results. First,
we think that we confirm the previous results, e.g., regarding gen-
eral usability.

H1 It is possible to reasonably solve the given tasks with the
given NV VI metaphor for clicking.

H2 It is more exhausting to use blowing compared to a mechan-
ical trigger.

H3 It is more exhausting to use the flystick as a pointer com-
pared to the user’s hand.

In the previous study [35] the lack of acoustic feedback seemed to
had a negative influence on the task performance, especially when
using the NV VI trigger. For instance, the participants sometimes
accidentally did not trigger a click due to insufficient precise point-
ing, but assumed the error results from an unsuccessful blow de-
tection, which led them to concentrate on that instead of trying to
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Figure 7: Device throughputs in birs/s. The striped bar represents
the group that got no acoustic feedback. Error bars show the 95%
confidence intervals.

coordinate simultaneous point and trigger. This should be compen-
sated by additional feedback. Therefore, we expect a better overall
performance that in case of the BH device catches up with the fly-
stick when acoustic feedback is provided.

H4 The acoustic feedback helps increasing the users confidence
in the blow conditions.

HS The group with acoustic feedback performs better regarding
speed and accuracy in the blowing conditions than the group
without additional feedback in the same condition.

H6 The participants are annoyed by the additional acoustic feed-
back (because of false positives).

H7 The blow conditions perform as good as the pure flystick
condition, at least when supported by acoustic feedback.

Additionally, we expect a better performance of the blow conditions
in comparison to the results of the previous study [35], due to the
improvements made. However, any direct comparison is difficult
because of possible differences in the overall setup, e.g., distribu-
tion of user experience.

4.6 Results

We report all results using a significance level of .05 and non-
significant trends at a level of .1. The objective measures were
analyzed with a two-way mixed-design ANOVA with a between-
subjects factor of acoustic feedback (present, not present) and dif-
ferent repeated within-subjects factors reported in detail in the
following. Whenever Mauchly’s test indicated that the assump-
tion of sphericity had been violated, the degrees of freedom were
corrected using Greenhouse-Geisser estimates. Additionally, we
will report the F—values and p—values in the case of the task
difficulties T1-T4 as ordered tuples F(x,y) = (F(T1),F(T2),...),
p=(p(T1),p(T2),...) to support readability.

Starting with the Fitts’ law task (see Section 4.3.1), we calculated
the device’s throughput in bits/s (see Figure 7), as suggested by
[27]. We used the Shannon formulation of Fitts’s law. In the follow-
ing, we only discuss the CtA order of calculation [22], i.e. through-
puts are first computed per difficulty level and then averaged. How-
ever, we also report the A7C order together with all other results for
comparability in Table 3. Throughput combines speed and accu-
racy and, thus, is a good measure to compare overall device perfor-
mance. The statistical analysis revealed no main effects of acoustic
feedback on throughput, F(1,31) = .033, p = .858, nor a main ef-
fect of the used device combination, F(2,62) = 3.048, p = .55, and
no interaction between acoustic feedback and device combination,
F(2,62) = .373,p = .690.

As throughput is not a complete substitute for the measured
time (see Figure 8) and error rate, i.e., ratio of false clicks to to-
tal number of performed clicks (see Figure 9), they were addi-
tionally inspected in the following. There were no main effects
of acoustic feedback on the mean time needed to perform a se-
lection in any task condition, F(1,31) = (.923,1.525,.024,.443),
p = (.344,.226,.878,.511). Furthermore, there were no main ef-
fects of the used device combination on the time for the two easier
tasks T1 and T2, F(2,62) = (.998,.892), p = (.374,.415). How-
ever, there was a statistically significant effect for the two more dif-
ficult tasks T3 and T4, F(2,62) = (3.162,8.437), p = (.049, .001).
A subsequent post-hoc Bonferroni test revealed no statistically sig-
nificant effects between the device pairs, (FF, BF) p = .110, (FF,
BH) p =.159, and (BF, BH) p = 1.0, regarding time. The same test
showed that participants performed significantly slower in T4 with
the FF condition than with BH (p = .009) and the BF (p = .003).
There was again no significant effect between the two blow condi-
tions BF and BH, p = .861. Finally, we did not find an interaction
effect between acoustic feedback and device combination on the
time per selection for any task, F(1,31) = (.923,1.525,.024,.443),
p = (.344,.226, .878,.511).

Continuing with the error, there was no significant main ef-
fect of acoustic feedback on error rate found for any task condi-
tion F(1,31) =(.919,.226,.037,.391), p = (.345,.638,.849,.536).
Regarding the device combination there was only a significant
main effect for the most difficult task T4, F(2,62) = 13.533,p <
.001, while not for T1-T3, F(2,62) = (.771,1.336,2.489), p =
(.467,.263,.091). A post-hoc Bonferroni test showed that there
happened significantly more errors in T4 when exclusively using
the flystick, than when using BF, p = 0.24, or BH, p < .001. There
was an non-significant trend between BF and BH, indicating that
BH was less error-prone than BF, p = .087. Finally, there was
no interaction effect between acoustic feedback and device com-
bination on the numberof errors made for any task, F(1,31) =
(.919,.226,.037,.391), p = (.345,.638,.849,.536).

The results for the reaction time task (see Section 4.3.2) are de-
picted in Figure 10 and also included in Table 3. The analysis
revealed no significant effect on the reaction time by the acoustic
feedback, F(1,31) =.005, p = .945, nor by the device combination,
F(2,62) = 1.717, p = .194. Furthermore, there was no significant
interaction between the two factors, F(2,62) = .163, p = .807.

The subjective measures were analyzed using a one-way
ANOVA with a between-subjects factor of acoustic feedback
(present, not present), using Welch’s ANOVA instead where Lev-
ene’s test indicated that the assumption of homogeneity of variances
was violated. As Post-hoc test, we used Tukey’s honest significant
differences (HSD) or the Games-Howell test, where the assumption
of homogeneity of variances was violated.

Figure 11 shows the results of a 5-point Likert scale subjec-
tive questionnaire the participants answered after the experimental
phase of the study. The statistical analysis revealed no significant
effects of acoustic feedback in any of the questions but the follow-
ing two. Participants that received acoustical feedback less often
had the feeling that they repeatedly had to blow to trigger a click
(Q10), F(1,30.163) = 7.402, p = .026. Furthermore, they felt more
confident while blowing (Q11), F(1,31) = .317, p = .003.

Additionally, we asked the participant to directly compare the
two trigger methods and the two pointing methods in NASA-TLX
inspired questionnaires (see Figure 12 & 13). The statistical anal-
ysis revealed no significant effects of acoustic feedback in all the
subjective comparisons.

Finally the participants filled out a SUS questionnaire for the two
relevant device combinations, FF and BH. The flystick condition
received a score of M = 74.3 , SD = 14.7 with acoustic feedback
and M = 77.3, SD = 19.6, without (see Figure 14). The hand-free
interaction method utilizing a blow trigger scored M = 76.7 , SD =



Table 3: Mean and (SD) over the participants, of the objective measures and system usability score (SUS), per device combinations (FF, BF, BH)

and divided by the factor acoustic feedback (ac).

TP time error rate reaction time SUS
CtA AtC T1 T2 T3 T4 Tl T2 T3 T4 ton i
FF 3¢ 2.20(.40) 2.11(44) | 1.22(20) 1.37(29) 1.70(.37) 3.04(.79) 5.84 (8.54) 8.76 (10.50) 15.27 (11.98)  42.20 (12.99) 72 (17) 74.34 (14.69)
2.23(36) 2.13(34) | 1.26 (.16) 1.39(.24) 1.75(.27) 3.04 (.60) 6.64 (7.49) 8.31(10.45) 17.10 (8.41)  39.03 (14.31) .69 (.11) 77.31 (19.62)
BF 2 2.35(49) 2.26(49) | 1.28(.19) 1.41(.26) 1.63(.24) 2.83(.88) 5.89 (7.21) 14.12 (14.00)  11.97 (13.13)  35.13 (14.03) 78 (.16) .
243(29) 243(35) | 1.34(26) 1.45(26) 1.57(.24) 2.59(.56) | 10.81 (12.61) 8.28 (7.58) 12.37 (10.55) 32.24 (11.88) 79 (.23) .
BH ac | 2.39 (41) 231(44) | 1.26(.19) 1.28(.11) 1.56(.30) 2.69 (.87) 6.26 (7.59) 6.24 (6.48) 11.98 (9.29) 29.62 (11.51) 72 (.28) 76.71 (18.65)
2.34 (50) 2.32(49) | 1.34(45) 1.43(.35) 1.61(45) 2.49(47) 6.71 (8.05) 9.17 (6.87) 11.37 (9.81) 28.67 (11.15) 73 (.10) 71.61 (15.83)
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Figure 8: Average time needed to perform one selection, per task
T1-T4 and, per device. The striped bar represents the group that got
no acoustic feedback. Error bars show the 95% confidence intervals.
A * denotes statistical significance, p < .05.
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Figure 9: Average error rate with regard to number of clicks per-
formed in total in percent, per task T1-T4 and, per device. The striped
bar represents the group that got no acoustic feedback. Error bars
show the 95% confidence intervals. A * denotes statistical signifi-
cance, p < .05.

18.6 with acoustic feedback and M = 71.6, SD = 15.8, without.
The statistical analysis revealed no significant effects of acoustic
feedback on the results.

4.7 Secondary Results

One notable difference to the BlowClick study setup as described
in [35] is the average user experience. While the pool of partic-
ipants here was more homogeneous (see Section 4.4), the previ-
ous one consisted mainly of experts in the field of 3D interaction.
Thus, we were additionally interested in potential effects, that may
occur in special groups of users, first time users (n = 13) and ex-
pert users (n = 7). We performed a one-way repeated measures
ANOVA on both of the groups with an within-subjects factor of
device combination. The analysis revealed no interesting effects
within the group of experts, but found significant effects within the

Figure 10: Average reaction time in seconds, per device. The striped
bar represents the group that got no acoustic feedback.

group of first time users in the time per selection of T3 and T4,
F(2,24) = (3.939,4.649), p = (.033,.020), and in the number of
errors made of T3, F(2,24) =9.636,p =.001,. and T4, F(2,24) =
14.150, p < .001. A post-hoc Bonferroni test showed that first-time
users made significant more errors in the both more difficult tasks
with the FF device, than with the BE, (p =.010, p = .043), and with
the BH condition, (p = .007,p = .001). In the time needed per se-
lection there was no significant effect, but a non-significant trend
suggesting that the BH device condition was faster than the BF in
T3, p = 0.63. However, no significant effect between the overall
device throughputs could be shown, F(2,24) = 3.310, p = .054.

5 DiscussION

First of all, we are surprised that the presence of additional acous-
tic feedback had no significant effect on most of the subjective or
objective measures for any of the device conditions (HS). This was
and is especially unexpected as participants reported and were ob-
served in the previous study [35] to have had often problems to
recognize when a trigger induced by blowing was successful. This
showed up in two effects. First, they went for the next target af-
ter not having selected the current one correctly and, thus, had to
come back. Second, the participants started to blow harder, be-
cause of a mis-selection, but the reason for that was not the trig-
ger, but the pointing. Both should actually happen less often when
provided with suitable feedback, and at least, the subjective mea-
sures show a significant difference in the acoustic feedback factor
in the two questions dealing with this (see Q10 and Q11). The lat-
ter confirms H4 which states that users feel more confident with the
additional feedback, however it was not measured to have an ef-
fect on the overall task performance (HS5), even though the partici-
pants were not more annoyed from the overall feedback as expected
(H6). We can also exclude the possibility that the tasks were not
difficult enough to benefit from the acoustic feedback, especially
the feedback given for a successful selection, which differed from
the standard trigger feedback, as the error rate for T4, for example,
lay between 30% and 40% for all devices. Of course, it seems to
be possible that most of the errors were induced by the pointing
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Figure 11: Answers to the subjective questionnaire, divided by the
factor acoustic feedback. A * denotes statistical significance, p < .05.

metaphors or pointing process and not by the trigger. Nevertheless,
there is no other evidence for that and we may need further mea-
surements to divide triggering from pointing effects. In summary,
people felt more confident with the additional feedback, but the ef-
fect is not strong enough to be measurable in the objective measures
or SUS (see Figure 14). This led us to the recommendation to use
additional acoustic feedback with an NV VI trigger to keep the user
aware of the current system state (as the classification is not 100%
precise) even when it does not directly increase the user’s perfor-
mance.

Independently from the feedback, the overall subjective and ob-
jective results confirm that blowing into a microphone is a suit-
able metaphor for clicking (H1). Furthermore, it does not perform
worse than a standard interaction device, the flystick (H7), and both
reached good system usability scores (see Figure 14). Moreover,
the blowing conditions BF and BH performed significantly faster
and more precise than the pure flystick condition within the most
difficult task. However, we think that the reason for that is not
the trigger alone, but the hand-eye coordination, or more precisely
the trigger-pointing coordination. It is usually even challenging to
keep a sphere focused for a longer time without trembling in this
task. Its actual moderate task difficulty (/D = 6) or the corrected
one /D, ranging from 5.4 to 6.3, does not indicate this, but its level
does not seem to translate one-to-one to a midair interaction con-
text, which is a point we will discuss below. This is notable in the
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Figure 12: Subjective comparison between trigger, divided by the
factor acoustic feedback.
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Figure 13: Subjective comparison between pointer, divided by the
factor acoustic feedback.

disproportionate increase of time and error for all conditions in T4
(see Figure 8 & 9). Having noted that, one can imagine that it is
even harder to trigger in the exact right moment, when the sphere is
hit. In our opinion, this is easier, first, with a trigger that is detached
from the pointing device, as the use of the mechanical trigger causes
small movements of the device, an effect called Heisenberg effect
[1]. Second, blowing may allow for more sensitive hitting the right
moment for triggering. Interestingly, this is the effect which seems
to occur earlier, i.e., already within T3 and for T4 again, if first-time
users of 3D user interfaces (see Section 4.7) are considered. This
might point out that this problem is even bigger for unexperienced
users but can be compensated with some training. The subjective
trigger comparisons (see Figure 12) also tend towards the NVVI
trigger, except the one asking for the exhaustion, as expected (H2).
Also as expected, the participants felt more exhausted using the fly-
stick as pointing device, rather than their hand (H3). Furthermore,
we can also confirm the results of the previous study [35], showing
that users seem to prefer their hand as a pointer over a flystick (see
Figure 13).

We made another observation that we want to share. The task
difficulty (ID) is one parameter of the throughput calculation, as
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Figure 14: System usability score (SUS), per device combination.
The striped bar represents the group that got no acoustic feedback.

it results from the average of the throughputs measured for each
difficulty. To calculate a robust score, it is recommended to consider
tasks with IDs approximately filling the interval between 2 and 8
[16]. As mentioned before, it seems to be hard for 3D selection
tasks, as the /D dies not translate in the same way to subjective
difficulty levels as in a 2D task. The tasks were designed to aim for
those interval borders and while this worked for the easiest task T1,
with an /D = 4 and a corrected /D, between 2.7 and 3.1, it was not
possible for the most difficult task, as mentioned above. However,
our throughput values are comparable with the ones measured for
a device similar to ours, the Pen Ray, by Teather et al. [31], even
when in another display setting.

Compared to the results from the previous study [35], the main
difference between both is the advanced recognition method for the
blow trigger. Nevertheless, there might be others that are not obvi-
ous and two were mentioned before including the experience level
of the participants and a slightly different definition of a click, re-
garding raising and falling signal flanks (see Section 4.1). However,
the first notable aspect is that most of the measurements for time
and error are in the same intervals, which arguably shows that the
results are at least roughly comparable. Moreover, the task T4 is
standing out and excluded from this observation. Participants per-
formed worse regarding time and error within this task for all device
conditions and only in this task. One explanation for this can be that
the less experienced participants had much more problems with this
task, which supports the observations made above. Furthermore,
the FF condition performed significant faster and with fewer errors
than the BH condition especially in the two easier tasks, T1 and T2.
This differences disappeared completely. Additionally, the subjec-
tive comparison of the more successful trigger (Q20) switched from
a light tendency for the button to a light one for the NV VI trigger.
Together with the overall results, this shows that depending on the
application an NV VI trigger should be considered as a possible so-
lution.

Lastly, we want to point out that the NV VI trigger as presented
here requires the user to wear a microphone, which is a limitation
to what we motivated to achieve. Although a wireless microphone
is usually a lightweight device, the user has to equip it and might
feel uncomfortable wearing it. However, this introduces no addi-
tional effort in application interfaces that already use speech input,
for example. Furthermore, especially with the advanced classifi-
cation presented here, it should no longer be necessary to blow
directly into a microphone, especially when considering different
NVVI types. This opens up the possibility to pick up the sound
by an external sensor, as long as the background noise is not too
dominant or the sensor is a dynamic directional microphone.

6 CONCLUSION

In this work, we presented a reliable NV VI metaphor for clicking.
We evaluated different classification methods and found an SVM
with Gaussian Kernel to perform best. Furthermore, this opened
up the possibility to add acoustic feedback to the NV VI trigger,
without annoying the user to much, because of false positives. We
conducted a user study to, among other goals, compare the NVVI
trigger included in a hand-free selection interface with a standard
6-DOF point-and-click device and could show that it is able to per-
form similarly. Additionally, our results led us to recommend the
use of triggers that are not mechanical and detached from the point-
ing device, at least for difficult 3D midair selection tasks. Moreover,
we want to advise the use of multi-modal feedback in combination
with NV VI triggers to increase confidence. Finally, the subjective
measures indicate that the results are highly relevant, as users seem
to prefer a hand-free point-and-click interface over a device, at least
in the presented configuration. In summary, the NVVI metaphor for
clicking showed enough potential to be considered in various IVE
application contexts and beyond that, just to exemplary name ac-
cessible computing or mobile devices.
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