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ABSTRACT

We present an approach for tracking space-filling features based on
a two-step algorithm utilizing two graph optimization techniques.
First, one-to-one assignments between successive time steps are
found by a matching on a weighted, bi-partite graph. Second,
events are detected by computing an independent set on potential
event explanations. The main objective of this work is investigat-
ing options for formal evaluation of complex feature tracking algo-
rithms in the absence of ground truth data.

1 INTRODUCTION

Tracking the temporal evolution of features is a key method in visu-
alizing and analyzing time-varying data. Existing feature tracking
approaches (e.g., [4]) have focused on structures that cover only a
small portion of the data domain, i.e. sparse features. In contrast,
in our work, we concentrate on the tracking of space-filling fea-
tures, i.e. structures that cover the entire data domain. Due to a
close collaboration with domain experts from fluid mechanics, we
focus on the tracking of a specific type of feature, namely dissi-
pation elements [5], a space-filling structure definition from turbu-
lent flow analysis. This work is motivated by our development of
a new tracking approach which is hard to validate due to the lack
of ground truth data. This is especially true for cases where even
small data sets contain thousands of features. Therefore, we eval-
uated our method on different flow simulation data sets containing
sparse and space-filling features by manual visual inspection of the
results. Furthermore, we present a set of options for further valida-
tion. Combining them offers a more meaningful evaluation of our
approach.

2 METHOD

Our feature tracking approach is posed as a combination of two
graph optimization problems. Assuming that continuations explain
the majority of features, we first try to detect these 1 : 1 assignments
by computing a maximum-weight, maximum-cardinality matching
on a bi-partite graph. To this end, we chose the pseudo-flow algo-
rithm by Goldberg and Kennedy [1] to solve the matching. The
matching either captures a continuation directly or identifies the
largest component of a merge or split event. Second, we construct
a graph of potential explanations for all feature objects that have
not been explained by the initial 1 : 1 assignment. The connec-
tions defined by the matching are assumed to be part of any po-
tential explanation. Those explanations are potentially conflicting
because they provide different explanations for at least one shared
feature. We compute a valid assignment between successive time
steps by searching for a maximum weight, independent set on the
graph that is constructed from the potential explanations. Hereby,
each node represents a potential event explanation whereas edges
between nodes indicate contradictions between those explanations.
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Thus, a maximum-weight independent set yields a conflict-free se-
lection of event explanations with maximal feature similarity. In
our current implementation, we formulate the independent set as an
integer linear programming, which we solve using the CBC solver
of the COIN-OR project. The solver features several heuristics.
We currently operate with an empirically determined convergence
threshold of 0.01, such that the weight of the independent set is
within 1% of an estimated upper bound provided by the solver, i.e.,
the solution found is a 0.99-approximation of the optimal solution.
Nodes which are not assigned after these steps are assumed to be
the result of a birth or death event. A detailed description of the
method can be found in [2, 3].

3 RESULTS

In this section, we evaluate our approach on three data sets result-
ing from a high-resolution direct numerical simulation (DNS) of
homogeneous, isotropic turbulence inside a box. Due to a lack of a
ground truth for a formal validation, the presented results are gath-
ered from manual visual inspection which is inline with previous
approaches [4]. For the first data set with a spatial resolution of
2563, dissipation elements are computed in a pre-processing step
resulting in a scalar field per time step containing the unique ele-
ment ID per grid point which is used by the tracking. Each time
step has a size of 64 MB and contains an average number of about
29k features. Since all feature objects are tracked and their evolu-
tion is stored, in our approach single features or a group of features
can be visualized to depict their temporal evolution and the events
they are involved in.

For our evaluation, we picked out a number of dissipation el-
ements which are located close to each other and inspected their
evolution for plausibility. All features are color-coded by their ID
with a random selected color. In case of a continuation, the fea-
ture maintains its color. All features participating in an event – e.g.,
merge or split – receive a new color to ease the distinction of differ-
ent features which might be densely packed because of the space-
filling characteristics and, hence, not distinguishable if they receive
the same color. This is in contrast to existing approaches where all
features or at least the largest component in an event maintains its
color. In Figure 1 we show an exemplary tracking of five dissipa-
tion elements which contact each other. The dense packing of the
selected elements illustrates the space-filling characteristics. While
the amber, dark green, turquoise, and cyan element in the left por-
tion of the image continue and remain as single features, the violet
one in the lower right portion of the image first splits into two parts
(red and magenta) and then immediately reconnects by a merge-
event to the green feature in the third time step.

Additionally, we validated our approach on a second data set
with dissipation elements which has a spatial resolution of 5123 and
on a vorticity data set with a spatial resolution of 2563. The latter
one which contains sparse features is included since similar settings
have previously been used for evaluating tracking algorithms which
concentrated on sparse features (cf. [4]). In this case, features are
extracted by a threshold on the scalar vorticity magnitude. Each
time step of the 5123 dissipation element data set contains an aver-
age number of about 110k features, each time step of the vorticity
data set an average number of 209 features.
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Figure 1: Depiction of a fast splitting and merging sequence of selected dissipation elements in the 2563 isotropic turbulence data set. While
the amber, dark green, turquoise, and cyan elements in the left portion of the image remain largely stable, the violet one first undergoes a split
followed by an immediate reconnection. The dense packing of elements illustrates the challenges of tracking space-filling structures.

We measured the runtime performance of our approach on these
data sets on a dual socket server featuring two Intel R© XEON R©

E5-2695 v3 CPUs (24 cores 2.3 GHz each) and 512 GB of RAM.
However, the algorithm does not (yet) run in parallel, thus it does
not benefit from the available cores. On the given hardware, a full
tracking step – including data loading, object extraction, matching
and event detection – for the vorticity data set takes on average 9.3s.
Most of the time is consumed by I/O, the matching takes 2.9ms and
the independent set calculation 15.5ms on average. The runtimes
for the space-filling dissipation element data sets are 151.4s and
1,269.2s for the 256 and the 512 case, respectively.

4 DISCUSSION & FUTURE VALIDATION

The preliminary results presented in Section 3 show that our algo-
rithm performed as expected for specific data sets. Nevertheless,
these promising results do not allow the assumption of the algo-
rithm’s correctness in general scenarios. Therefore, a broader val-
idation of the method is required. Unfortunately, a ground truth
which would be necessary for a formal validation is missing. Thus,
in this section, we discuss a set of options to further evaluate our
approach despite the lack of a ground truth.

One aspect to formally prove the tracking correctness of our ap-
proach is the test on synthetic data which inclose all possible mo-
tions and events such as continuation, split, merge, birth, and death.
In this regard, we plan to compose data sets with a known temporal
evolution and predefined events which exhibit as similar dynamics
as possible to our data sets resulting from DNS. A feasible tech-
nique to generate such synthetic data is, e.g., to take a single time
step of the simulation data and move the elements across the do-
main. Additionally, events could be included by defining a feature
in a subsequent time step as background to simulate a death event
or by dividing one element in two ore more parts with a new unique
ID to simulate a split. Birth and merge events could be constructed
in the same manner going backwards in time. However, a test on
such artificially constructed data sets would have only limited ex-
pressiveness since it is hard to model similar temporal dynamics as
in real data sets.

For this reason, another facility to evaluate the method is a
thorough visual inspection of the resulting temporal evolutions of
tracked features by domain scientists. For example, the plausibility
of different tracks of one feature or a group of features could be
retrieved by experts. This could be done by generating videos of a
visualization of the evolution of single features and events as in Fig-
ure 1 which could be inspected by the domain experts. Moreover,
single features and events could be tracked manually by domain

scientists and the results could be compared to the results of the al-
gorithm. Though, a visual inspection of whole data sets – in case of
the dissipation element data sets even for one time step – would be
to extensive, i.e. this method is limited to a small amount of feature
tracks. Nevertheless, this is covered by the tests on synthetic data
sets as mentioned above.

Validation using synthetic data and expert reviews only offer in-
ternal validity of the algorithm’s functionality. Therefore, at least a
comparison with the results of existing approaches on the same data
sets could be taken into account for external validity. To this end,
we plan to investigate the consistency of the tracking results for dif-
ferent approaches and their runtime performance on the synthetic as
well as on well-known sparse and dense real data sets.

Independent from this internal and external validation, we deter-
mined a dependency of tracking quality on the temporal sampling of
the data as previously stated in [4]. In this context, we further plan
to investigate the temporal stability of our approach in comparison
to existing approaches. An increased temporal resolution implies
smaller changes between time steps, which drastically reduces the
search space during event detection. A reduction in candidate fea-
tures would allow us to ease the artificial cutoff thresholds of our
approach or to omit them entirely.

In summary, we presented an approach for the tracking of sparse
and space-filling features and its evaluation by manual visual in-
spection. Additionally, we depicted various options for further val-
idation which will be addressed in future work and offer a more
solid evaluation.
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