
ORIGINAL RESEARCH
published: 01 June 2018

doi: 10.3389/fninf.2018.00032

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2018 | Volume 12 | Article 32

Edited by:

Robert Andrew McDougal,

Yale University, United States

Reviewed by:

Salvador Dura-Bernal,

SUNY Downstate Medical Center,

United States

Jeffrey L. Krichmar,

University of California, Irvine,

United States

Marianne J. Bezaire,

Boston University, United States

*Correspondence:

Christian Nowke

cnowke@gmail.com

Sandra Diaz-Pier

s.diaz@fz-juelich.de

†These authors have contributed

equally to this work.

Received: 06 December 2017

Accepted: 11 May 2018

Published: 01 June 2018

Citation:

Nowke C, Diaz-Pier S, Weyers B,

Hentschel B, Morrison A, Kuhlen TW

and Peyser A (2018) Toward Rigorous

Parameterization of Underconstrained

Neural Network Models Through

Interactive Visualization and Steering

of Connectivity Generation.

Front. Neuroinform. 12:32.

doi: 10.3389/fninf.2018.00032

Toward Rigorous Parameterization of
Underconstrained Neural Network
Models Through Interactive
Visualization and Steering of
Connectivity Generation
Christian Nowke 1*†, Sandra Diaz-Pier 2*†, Benjamin Weyers 1, Bernd Hentschel 1,

Abigail Morrison 2,3,4, Torsten W. Kuhlen 1 and Alexander Peyser 1

1 Visual Computing Institute, RWTH Aachen University, JARA-HPC, Aachen, Germany, 2 SimLab Neuroscience, Jülich

Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany,
3 Institute of Neuroscience and Medicine, Institute for Advanced Simulation, JARA Institute Brain Structure-Function

Relationships, Forschungszentrum Jülich GmbH, Jülich, Germany, 4 Institute of Cognitive Neuroscience, Faculty of

Psychology, Ruhr-University Bochum, Bochum, Germany

Simulation models in many scientific fields can have non-unique solutions or unique

solutions which can be difficult to find. Moreover, in evolving systems, unique final state

solutions can be reached by multiple different trajectories. Neuroscience is no exception.

Often, neural network models are subject to parameter fitting to obtain desirable output

comparable to experimental data. Parameter fitting without sufficient constraints and a

systematic exploration of the possible solution space can lead to conclusions valid only

around local minima or around non-minima. To address this issue, we have developed

an interactive tool for visualizing and steering parameters in neural network simulation

models. In this work, we focus particularly on connectivity generation, since finding

suitable connectivity configurations for neural network models constitutes a complex

parameter search scenario. The development of the tool has been guided by several

use cases—the tool allows researchers to steer the parameters of the connectivity

generation during the simulation, thus quickly growing networks composed of multiple

populations with a targeted mean activity. The flexibility of the software allows scientists

to explore other connectivity and neuron variables apart from the ones presented as use

cases. With this tool, we enable an interactive exploration of parameter spaces and a

better understanding of neural network models and grapple with the crucial problem of

non-unique network solutions and trajectories. In addition, we observe a reduction in turn

around times for the assessment of these models, due to interactive visualization while

the simulation is computed.

Keywords: simulation and modeling, neural networks, structural plasticity, interactive systems, high performance

computing, visualization software

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00032
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00032&domain=pdf&date_stamp=2018-06-01
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cnowke@gmail.com
mailto:s.diaz@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00032
https://www.frontiersin.org/articles/10.3389/fninf.2018.00032/full
http://loop.frontiersin.org/people/268211/overview
http://loop.frontiersin.org/people/264471/overview
http://loop.frontiersin.org/people/279286/overview
http://loop.frontiersin.org/people/276037/overview
http://loop.frontiersin.org/people/13504/overview
http://loop.frontiersin.org/people/14183/overview
http://loop.frontiersin.org/people/222839/overview

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

INTRODUCTION AND RELATED WORK

Neuronal models and neural mass models, usually based on
coupled systems of differential equations, contain many degrees
of freedom which determine the dynamics of the system. In a
neural network, thesemodels are interconnected and the strength
of the interactions between elements can also change through
time.

Since biological evidence to specify a complete set of
parameters for a neural network model is often incomplete,
conflicting, or measured to an insufficient level of certainty,
parameter fitting is typically required to obtain outputs
comparable to experimental results (see for example, López-
Cuevas et al., 2015; Schuecker et al., 2015; Zaytsev et al., 2015;
Schirner et al., 2016). And even if we had infinite experimental
data available, Cubitt et al. (2012) have shown that, regardless
of how much experimental data is acquired for a general
system, the inverse problem of extracting dynamical equations
from experimental data is intractable: “extracting dynamical
equations from experimental data is NP hard.” This implies
that in neural networks, the problem of finding the exact
free parameters for a simulation leading to results matching
experimental measurements cannot be solved in polynomial
time, at least under the current understanding of computational
complexity.

However, we can explore the parameter space with forward
simulations in order to discover the system’s characteristic
behaviors and thus limit the search space to a computationally
tractable sub-problem in an educated manner. The definition
of these subspaces can then be the basis for robust—
and non-arbitrary—parameter determination (in other words,
mathematically valid performance function minimization). In
fact, given the known mathematical characteristics of the
dynamics of neuronal and neural mass networks, investigators
should characterize the solution spaces of sufficiently complex
networks and models before selecting what they propose are
statistically diagnostic simulation trajectories. In practice, this
rarely happens, even though parameter fitting without sufficient
constraints and a rigorous exploration of the possible solution
space can lead to conclusions valid only around local minima or
around non-minima. Researchers frequently stay within arbitrary
regions in the parameter space which show interesting behaviors,
leaving other regions unexplored.

Visual parameter space exploration has been successfully
applied in several key scientific areas, as detailed by Sedlmair
et al. (2014). Combined with interactive simulation steering, the
time for obtaining optimal parameter space solutions can be
significantly reduced (Matković et al., 2008, 2014). Whitlock et al.
(2011) present an integration of VisIt (Childs et al., 2005), a
flexible end-user visualization system, into existing simulation
codes. This approach enables in situ processing of large datasets
while adding visual analysis capabilities at simulation runtime. A
similar approach has been suggested by Fabian et al. (2011) for
ParaView (Henderson, 2004).

Coordinated multiple views (CMVs) as proposed by North
and Shneiderman (1997) and Wang Baldonado et al. (2000)
can assist in visual parameter space exploration. CMVs are a

category of visualization systems that use two or more distinct
views to support the investigation of a single conceptual entity.
For example, a CMV system can display a 3D rendering of
a building (the conceptual entity) alongside a top-down view
of its schematics—whenever a room is selected within the
schematic overview, the 3D rendering will highlight the room’s
location. Roberts (2007) shows that CMVs support exploratory
data analysis by offering interaction with representations of
the same data while emphasizing different details. Ryu et al.
(2003) present CMV systems that have been successfully utilized
to uncover complex relationships by enabling users to relate
different data modalities and scales, and assisting researchers in
context switches, comparative tasks, and supplementary analysis
techniques. Additional examples of such systems are presented by
North and Shneiderman (2000), Boukhelifa and Rodgers (2003),
and Weaver (2004).

Visual exploration of neural network connectivity, e.g.,
by displaying spatial connectivity data in 3D renderings, has
previously been employed by scientists to better understand
and validate models as well as to support theories regarding the
networks’ topological organization (Migliore et al., 2014; Roy
et al., 2014). The infinite solution space of suitable connectivity
paths and end configurations for neural networks makes
fully automatic parameter fitting “hard,” since it involves
satisfying multiple contradictory objectives and qualitative
assessment of complex data, as explained by Sedlmair et al.
(2014). Kammara et al. (2016) conclude that for multi-objective
optimization problems, visualization of the optimization
space and trajectories permits more efficient and transparent
human supervision of optimization process properties, e.g.,
diversity and neighborhood relations of solution qualities.
They also point their work toward interactive exploration
of complex spaces which allows expert knowledge and
intuition to quickly explore suitable locations in the parameter
space.

To address efficient but rigorous parameter space exploration,
we have developed an interactive tool for visualizing and steering
parameters in neural network simulation models. In this work,
we focus particularly on the generation of connectivity, since
finding suitable connectivity configurations for neural network
models constitutes a complex parameter search scenario. The
generation of local connectivity is achieved using structural
plasticity in NEST (Bos et al., 2015) following simple homeostatic
rules described in Butz and van Ooyen (2013). We specify
the problem from the control theory perspective, as variations
in the structure system control the transition in its dynamics
from an initial to a final state following a defined trajectory.
The tool allows researchers to steer the parameters of the
structural plasticity during the simulation, thus quickly growing
networks composed of multiple populations with individually
targeted mean activities. The flexibility of the software allows
the exploration of other connectivity and neuron variables apart
from those presented as use cases. We use CMVs to interactively
plot firing rates and connectivity properties of populations
while the simulation is performed. Moreover, simulation steering
is realized by providing interactive capabilities to influence
simulation parameters on the fly.

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

We have developed this tool based on two use cases where
visual exploration is key for obtaining insights into non-unique
dynamics and solutions. The first use case focuses on the
generation of connectivity in a simple two population network.
Here we show how the generation of connectivity to a desired
level of average activity in the network can be achieved by taking
multiple trajectories with different biological significance. The
second use case is inspired by a whole brain simulation described
in Deco et al. (2013), where the exploration of non-unique
connectivity solutions is desired to understand the behavior of
the model.

Applying this approach, an intractable inverse problem can
be reduced to a tractable subspace, and the requirements for
statistically valid analyses can be determined. Visualization can
simplify a complex parameter search scenario, helping in the
development of mathematically robust descriptions amenable
to further automated investigation of characteristic solution
ensembles. Observing the evolution of connectivity, especially in
cases where several biologically meaningful paths may lead to
the same solutions, can be useful for a better understanding of
development, learning and brain repair. This work is a first step
toward developing new analytic and computational solutions
to specific inverse problems in neuronal and neural mass
networks. Our software platform promotes rigorous analysis of
complex network models and supports well-informed selection
of parameters for simulation.

This paper is structured as follows: first, we present an
introduction to generic dynamic neural network models from
a control theory perspective. Next, we describe connectivity
construction and its effects on the dynamics of the system.
Then, the development process and design of the steering and
visualization tool is detailed. The fifth section describes the
results of using the steering tool in two different use cases. Finally,
we discuss our results and present open questions and future
work.

GENERAL FORM OF NETWORK
DYNAMICS

Let a neural network be defined by a set of ordinary differential
equations in which x1(t), x2(t)...xn(t) are state variables of the
system at time t. We assume that neurons in this model can
be either in an active or quiescent state. The master equation
of a neural network has been derived and explained in Cowan
(1991) and Ohira and Cowan (1993). This equation provides a
mathematical description of the evolution of stochastic neural
networks in the form of a Liouvillian:

L = α

N
∑

i = 1

(1+i − 1)1−i +

N
∑

i = 1

(1−i − 1)1+i φ

1

ni

N
∑

j = 1

ωijxj

(1)

where α is the decay function after a neuron has spiked, 1+i

and 1−i are the raising and lowering operators which take a
neuron i to and from an activation state, ni is the number of

connections to neuron i, N is the total number of neurons in the
network, φ is the activation rate function which depends on the
neuron model and ωij is the strength of the connection between
neuron i and j. Synaptic growth and connectivity variations in
neural networks further increase the complexity of the system. In
the case of variable connectivity, the network master equation is
transformed into:

L = α

N
∑

i = 1

(1+i − 1)1−i

+

N
∑

i = 1

(1−i − 1)1+i φ

1

ni
(

u(t)
)

N
∑

j = 1

ωij

(

u(t)
)

xj

 (2)

where both ωij and ni depend on the control signal u coming
from the synaptic and structural plasticity algorithms at time t.
We introduce this formulation to expose variables u(t) in the
system, which can be controlled. We are interested in modifying
these signals in order to induce changes in the network and thus
achieve a target dynamic profile. However, it is worth noting
that our approach is also applicable to non-stochastic neural
networks.

Control Theory for Network State
Trajectories
Both synaptic and structural plasticity can be seen as biological
controllers in a multi-objective optimization problem. Under
this view, the system gradually creates and destroys connections
between neurons, or modifies the strength of existing synapses
(control), to achieve a transition from one initial state to a final
steady (or even homeostatic) state. This final state can be a
previously known activity state which has been altered, as in
repair after a lesion, or a new activity state to be achieved, as is
the case in learning. Thus, the evolving connectivity problem can
bemathematically expressed in terms of control theory as defined
in Kirk (2012).

In our case, the control signals refer to the variations in the
connectivity of the network while the states refer to the dynamics
of the network. The state equations take the form of:

ẋ = a
(

x(t), u(t), t
)

(3)

where u is the history of control signals during the interval
[t0, tf], and the state trajectory denoted by x is the history of state
values during the same time interval. A control history which
satisfies the constraints of the system (in this case, experimental
parameters of neurons and synapses) during the time interval
of interest is called an “admissible control.” On the other hand,
an “admissible trajectory” is a state trajectory which satisfies the
constraints of the state variables through the whole period of
interest. The final state of the system is then required to lie in a
specific region, defined as the target set, of the n+ 1-dimensional
state-time space.

By applying the control signal u(t) from t0 to tf , the system
will evolve from its initial state x0 following some trajectory
to a final state xf . The “performance” of this trajectory is the

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

difference between a desired and the obtained measure for a
heuristic involving the dynamics of the system. In our case,
the performance function is given by the homeostatic rules the
system must follow. To reach a defined target activity regime,
we cannot know a priori whether an optimal admissible control
exists, which leads the system through an admissible trajectory
for a given performance function. It may be impossible to find
such a control history, and even if it exists, it may not be unique
or numerically stable.

The optimization problem posed seeks a global minimum for
one or more admissible trajectories of the system. For the class of
neural networks described by the dynamical equations above, the
problem of finding the exact control signals or free parameters
for a simulation leading to experimental results cannot be solved
in polynomial time. However, it may still be possible to confirm
solutions in polynomial time.

CONNECTIVITY GENERATION IN NEURAL
NETWORKS

Previous research by Sporns et al. (2005) has found that
the assembly of anatomical connections among neurons, also
known as the connectome, plays a fundamental role in
explaining the high-level activities of the brain. However, the
exact relationship between anatomical links and the functions
performed by the brain has aspects that remains unclear. An
attempt to model biologically realistic circuits immediately
runs into the problem that the structure of the brain has
yet to be comprehensively characterized. Existing connectomic
datasets are incomplete or contain large uncertainties (Bakker
et al., 2012). Conversely, information about the average
electrical activity in specific brain regions is easier to acquire
either directly, e.g., electroencephalogram, extracellular electrode
recordings of spiking activity and local field potential, or
indirectly, e.g., functional magnetic resonance imaging and
optogenetics/calcium imaging.

Variations in the physical elements, which constitute a neural
network, can be modeled using synaptic and structural plasticity.
Structural plasticity, a model of the dynamic creation and
deletion of synapses in a neural network, is desirable from
two main perspectives. The primary purpose is to study the
neurobiological phenomenon of morphological transformations
that a neuron or set of neurons undergoes through time, leading
to the creation or deletion of synapses. This phenomenon is
part of brain development, learning and repair. However, a
promising secondary role suggested by Diaz-Pier et al. (2016)
is the automatic generation of neuron-to-neuron synapses to
compensate for gaps in experimental connectivity data. Using
structural plasticity, a network can autonomously generate
synapses to achieve a stable desired profile of electrical activity,
a measure that is experimentally more accessible than detailed
connectivity data. By progressively and slowly changing the
connections between neurons in the network and the weight
of these connections for all regions, the structural plasticity
algorithm is able to find stable configurations within the desired
firing rate profile.

The structural plasticity implementation in NEST is based on
the model proposed by Butz and van Ooyen (2013) and described
in detail by Diaz-Pier et al. (2016). In this plasticity framework,
neurons have contact points called synaptic elements which
increase or decrease in number according to simple homeostatic
rules. When new synaptic elements become available, they can be
used to create new synapses. If the contact points are eliminated,
the synapses formed earlier are destroyed. Homeostatic rules
applied to the synaptic elements are intended to take the mean
electrical activity to a desired state.

A Gaussian curve (Figure 1) is an example of a homeostatic
rule describing the growth rate of connection points for neurons.
The original model by Butz and van Ooyen (2013) uses
intracellular calcium concentration as a proxy for the mean firing
rate. In this paper’s examples, we will use a variation directly
referencing the mean firing rate as our homeostatic rule.

The parameters defining the growth and decay of synapses are
the minimum firing rate η required to generate synaptic elements
(or destroy them, depending on sign of ν), the value ν of the
growth rate curve when the firing rate is (ε− η)/2, and the target
firing rate ε. Modifying these values alters the way connectivity is
created and destroyed in the network.

Thus, to calculate the number of synaptic elements per second
(dn/dt) to create (or remove, if negative), we use:

dn

dt
= v H[λ − η]

[

2 pow2

(

−

[

2
λ − η

ǫ − η
− 1

]2
)

− 1

]

(4)

where pow2 x is the power function 2x and H[x] is the Heaviside
step function equal to 0 when x < 0, otherwise 1. Equation (4)
is equivalent to the Gaussian used in Diaz-Pier et al. (2016)
after directly replacing the calcium concentration with the
firing rate λ. In this paper’s simulations, this form is not
biologically motivated, but is a homeostatic meta-rule being used
to numerically solve for networks consistent with fixed firing
rates.

The firing rate λ at time t used in Equation (4) is calculated
by low-pass filtering spike train data by convolving that data with
an exponential decay kernel (Park et al., 2013): the current firing
rate λ is increased by 1/τ spikes/s for each spike and decays
exponentially with a time constant τ = 10 s between firing times.
Thus,

τ
dλ

dt
= −λ +

∑

tf

δ

(

t − tf
)

(5)

where tf are the firing times of the neuron and δ is the Dirac delta
function. This calculation is internal to NEST and independent
of our tool. When the convolution technique isn’t suitable, an
alternate mean firing rate can be computed using a user-defined
window size applied to binned spike trains.

As discussed in the previous section, synaptic and structural
connectivity can be seen as multi-objective optimization
algorithms which take the network from an initial state to a final
state where something has been learned or a new activity pattern
has been enabled. Partial information about the connectivity
can be combined with information about average activity in

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

ε

Firing rate (Hz)

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
5.0 10.0 0.510.0

∆
 S

y
n
a
p
ti

c
 e

le
m

e
n
ts

/s

ε

Time (s)

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
5.0 10.0 0.510.0

∆
 S

y
n
a
p
ti

c
 e

le
m

e
n
ts

/s

 ε

Time (s)

12.0

10.0

8.0

6.0

4.0

 2.0

 0.0
5.0 10.0 0.510.0

F
ir

in
g
 r

a
te

 (
H

z
)

A B C

FIGURE 1 | (A) Example of growth rate curves determining the rate of creation or deletion of synaptic elements in the structural plasticity model. The parameters

which define the shape of the curve are two firing rates, the minimal firing rate for creating/deleting synaptic elements η and the target firing rate ǫ, and the growth rate

ν which is the value of the curve in synaptic elements/s when the firing rate λ = (ǫ − η)/2. The red, cyan and purple curves have a negative value of ν which implies

that synaptic elements will be deleted when the current firing rate is less than the target rate. These curves are therefore suitable for inhibitory synapses. Conversely,

synaptic elements will be created when the current firing rate exceeds the target. The brown curve has a positive ν which works in the opposite way. All curves display

different values of η; in particular, the cyan curve has a negative value of η. In these cases, all curves have a target firing rate ǫ of 8 Hz. It is important to note the slope

of each curve close to the target firing rate ε; this slope is critical for the stability of the optimization algorithm. (B) Firing rate externally imposed on sample systems

with Gaussian growth curves shown in (A,C) the resulting evolution of synaptic growth rate through time due to the firing rate changes depicted in (B). See Figure 5B

for an equivalent Gaussian growth curve for the two-population example in this paper, and the resulting free (not driven) dynamics in Figures 5C–E.

the system to initialize models of structural plasticity filling the
gaps in the constraints of the system. However, finding suitable
connectivity configurations and generation trajectories for neural
network models is non-trivial, which is exacerbated by the nature
of experimental data. The known experimental data often fails
to sufficiently constrain the model to parameter subspaces that
can be completely explored with reasonable resources within
reasonable time frames.

Enabling structural plasticity for a single population to reach
a targeted activity level is usually unproblematic, fast, and
relatively insensitive to the choice of parameters such as ν and
η. However, a big challenge arises when structural plasticity is
involved simultaneously on several interconnected populations
with differing levels of activity. Even small changes in the
connectivity of each population will impact the activity of
all others to which it is connected, leading to a propagated
destabilization. Another parameter which has a great impact on
stability is the update interval at which synapses can be deleted or
created. As in any control system, the delay between a control
change and the response of the system strongly determines
the capability of the controller to keep the system in a stable
region.

In Diaz-Pier et al. (2016), the simulations were performed
statically, meaning no steering was possible during runtime.
Due to the large combination of parameters to be controlled
and variables to be observed during the search process, brute-
force parameter search based on static simulation proved
to be insufficient to obtain stable states. The selection of
adequate parameters to define and constrain the growth of
network connectivity, especially for multi-population or coupled
networks, is not trivial since some values might lead to unstable
setups. Therefore, modifying the characteristics of the growth
behavior (ν and η see Figure 1) for each population and the
update interval during simulation becomes crucial for finding
a suitable stable state for multi-population networks. We use
the terms “population” and “region” interchangeably to refer

to groups of neurons. The term chosen depends on the use
case. In general, a region contains one or more populations
while populations specify groups of neurons of the same type.
Connectivity exists both within and between populations and
regions. All types of connectivity can be subject to plasticity or
remain fixed after setup. The software can be modified to take
into account any number of populations per region, arbitrary
types of neurons, and any number of regions. The user can
also specify different types of connections between the same
populations and apply various structural plasticity rules to each
of them. The user can choose between a variety of connectivity
modalities in NEST, ranging from one-to-one, all-to-all, fixed in-
degree, fixed out-degree, fixed total number of connections, and
pairwise Bernoulli. However, structural plasticity support is only
currently implemented for one-to-one and all-to-all connectivity.
Other modalities can be used, but structural plasticity will not
affect these connections.

In the context of a simulation with evolving connectivity, the
dynamic nature of the parameter search workflow derived from
the two use cases presented later requires:

W1: The simultaneous analysis of several changing variables by
an expert.

W2: Comparing the level of activity of several populations
simultaneously.

W3: Changing simulation parameters at any moment in each
population of the network.

W4: Snapshotting a time point in the simulation and storing the
connectivity state.

W5: Loading a previously stored connectivity state.

This workflow can potentially be assisted with an interactive
tool enabling scientists to explore and steer such simulations
within the space of possible trajectories. To achieve this
goal, a scientist needs interactive feedback on the number
of connections and the level of electrical activity in all
populations.

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

IN SITU VISUALIZATION AND STEERING
OF CONNECTIVITY GENERATION

To enable navigation through the connectivity generation
parameter space, we developed a tool enabling interactive
steering and visualization. The development was driven by the
need to rapidly reach stable configurations of connectivity in
multiple tightly connected populations. We then extended the
tool to support further use cases which are presented later.
The tool allows for the visualization of trajectories that the
system undergoes during simulation by showing the changes
in the observable states of the network (specifically the activity
and connection properties of the network). In addition, this
tool allows for the modification of the control signals for
the generation of connectivity, i.e., the plasticity algorithm’s
parameters.

The developed tool realizes a CMV system by applying
principles of event-driven architectures as presented in Abram
and Treinish (1995), Michelson (2006), and Nowke et al. (2015).
The development of the tool was organized into four stages: first,

the simulation script was modified to retrieve electrical activity
and connectivity values; second, the visualization components
and user interfaces were developed; third, processing of

parameter changes from the user interface was added; and finally,
the simulation script was optimized to run on supercomputers.

In the first step, we started by reproducing the plots from
the non-interactive analysis workflow used in the second use
case. This initial design phase revealed the following visualization
requirements (R1–R5), followed by the requirements for
simulation steering (R6–R10). These requirements hold for all
presented use cases:

R1: Deal with at least 2 × N representations of time series data
(electrical activity and connectivity), where N is the number
of populations in the simulation.

R2: Interactively plot the firing rate for selected populations. The

firing rate from the last simulation step should be displayed
as soon as its computation concludes.

R3: Interactively plot connections for each population. As for
the firing rate, the latest total connections per population
should be displayed.

R4: Enable the selection and filtering of populations for plotting

and further investigation. The means to select and filter

populations of interest must be provided.
R5: Have a well defined way to distinguish populations in

the plot. Since multiple populations can be selected for

comparison, visual clutter needs to be avoided.
R6: The user interface must allow for the modification of each

population’s growth rate ν and apply each value in the
simulation.

R7: The user interface must allow for the modification of a
population’s minimum electrical activity η and transfer the
new value to the simulation engine.

R8: The user interface must allow for the modification of the
update interval and transfer its change to the simulator.

R9: Control the NEST simulation from within a graphical user
interface. Provide the means to start or stop the simulation,

trigger the saving and loading of a network state, and allow
convenient access to the visualizations.

R10: Enable loading and saving of the current network state
(connections and user controlled parameters).

Requirements R1–R5 cover the parameter search workflow W1

and W2. R6–R10 target W3–W5. Based on these requirements,
we developed the software architecture as depicted in Figure 2.
Each box in this figure we term a service. Services and the
simulation engine NEST exclusively communicate via events.
Communication via events allows us to treat each visualization
as an independent loosely-coupled service. One benefit of this
approach is that all services are independent of each other,
facilitating the production of small reusable software components
that are easy to maintain and can be reused in different contexts.

Event-communication is realized with the “nett ” messaging
framework (see Supplementary Material), which is an open
source C++ network library facilitating data transfer between
application boundaries based on the publish and subscribe
pattern. To enable communication between applications,
nett provides slots. A slot is an unidirectional communication
channel strictly typed to an event. Slots exist in two flavors:
out-slots for publishing events and in-slots for subscribing to
these. Consequently, subscribing slots can be connected to
several publishers emitting the same event. An event is defined
via a customizable schema, describing the fundamental data
types the event is composed of. Moreover, nett provides Python
bindings, making it possible to communicate between Python,
i.e., the visualization implementations, and C++ applications,
i.e., NEST.

Streaming simulation results from NEST is already possible
with the MUSIC interface (Djurfeldt et al., 2010). However,
MUSIC is specifically built for transferring large arrays of
structured data in parallel with a certain step size and with a focus
on latency. It is tailored to multi-scale coupling and large data

FIGURE 2 | Overview of the system architecture: boxes denote individual

services. Black arrows mark communication from the simulation engine to the

visualization front-ends. Vice versa, white arrows indicate event-flow from the

visualization services to the simulation engine. Ranks indicate individual MPI

processes responsible for the parallel computation of the neural network. The

“ETA” (η) and “growth rate” (ν) manipulators control the respective variables

from Figure 1.

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

transfer. In comparison, nett focuses on arbitrary serialization
of data through tiny pipes and is based on a publish-and-
subscribe communication mechanism. In addition, it is intended
for point-to-point continuous streaming and is event-driven
in comparison to the pull-driven communication regime by
MUSIC. Furthermore, nett offers routing discovery whileMUSIC
relies an a static configuration on startup. In summary, nett is
tailored to concise and light data transport and easy to integrate
data streaming from C++ or Python codes.

The rest of this section will outline the required simulation
instrumentation and the visualization services in more detail.

Simulation Instrumentation
Interactive steering relies on a bidirectional communication
between the visualization and steering interfaces to a simulator.
In our setup, activity levels and connectivity from populations
computed by NEST are transferred via event communication
over a network connection to the visualizations, where users can
modify parameters of the simulation model, which in turn are
fed back to the simulator. The values of interest are the firing
rate of each population which serves as a proxy for electrical
activity and a population’s total connections formed due to
connectivity generation. These are the observable states of the
network. Steering parameters are the minimum firing rate η and
the growth rate ν of each population, the update interval for the
connectivity generation, and finally, basic commands to NEST
such as ending or resetting the simulation, and storing or loading
the current network state.

To retrieve firing rates and total connections, instrumentation
of the simulation script is required. To this end, the simulation
acquires the latest firing rates and total connections of each
population in each iteration and publishes these as events.
Then, parameter changes from the graphical steering interfaces,
asynchronously retrieved during the model’s computation, are
applied and the next iteration is continued.

To adapt a NEST simulation to a different use case, the first
step consists of determining what data needs to be transferred
from or to the simulation. The next step consists of creating
an event definition schema for the data to be transferred if
one is not yet present. Then, slots for communicating this data
definition can be created: out-slots for publishing data and in-
slots to retrieve it. Once slots are created, in-slots need to be
connected to their corresponding out-slots. Any in-slot should
be used in a thread to asynchronously retrieve data without
blocking the computation of the simulation. Once an event is
received by a slot, its data needs to be applied in the next iteration
of the simulation. In a complementary fashion, out-slots send
the simulation results for each iteration by retrieving values
of interest from the simulation and filling the slot’s event and
sending it. The same methodology is used for visualizations or
graphical user interfaces which are use case specific.

Visualization System Overview
The visualization system consists of six services fulfilling the
above listed requirements. A demonstration video of the tool can
be found in Supplementary Material (see video Movie 1). In the

following, we outline each service and its responsibility in the
workflow.

Control Panel
The Control Panel is the central place to provide convenience
functionality, i.e., to start the simulation, all visualization
services, steering interfaces, the Color Editor, and Region Selector
(see Figure 3). It serves as an entry point for users to start the
investigation of structural plasticity. The user interface facilitates
changing the update interval (R8) and allows the simulation to
be paused or restarted (R9). In addition, it provides a graphical
interface for loading and saving the network state (R10).

Region Selector
The Region Selector is a graphical interface displaying a list of all
populations in the simulation (see Figure 3, rightmost element).
These populations are defined by the network modeler in the
simulation script as part of the instrumentation process. This
is detailed in the instrumentation manual in Supplementary
Material. The list provides the means to select populations of
interest whose connectivity and firing rates should be plotted
(R4). To this end, the Region Selector retrieves the number
of populations from the simulation (see Figure 2). The user
can then select multiple populations by clicking on them. All
connected visualizations are linked with the current selections;
thus it can be used to synchronize all tools for filtering data
and in this way populations of interest can be focused (R4). The
Region Selector can also be used to inspect individual populations
of interest. By double clicking on a population in the list, an
additional Activity Plot and Connectivity Plot is created plotting
only the selected population of interest. This functionality can
be used on multiple populations, independently of selections
performed later on and facilitates the pairwise comparison of
populations.

Activity Plot
The assessment of the simulation results is based on the
inspection of a population’s firing rate. The Activity Plot is
an interactive service that plots the firing rates of populations
selected in the region selector (R1). It is used to visualize
the trajectories that the network traverses in terms of its
functional states. To this end, it connects to the region selector
and listens for incoming selection events (R4). To display the
firing rate (R2), the service directly connects to the simulation
to retrieve the last iteration result. Interactive zooming and
panning capabilities allow the scientist to focus on details on
demand, following the “information seeking” mantra postulated
by Shneiderman (1996). Interactive zooming can be used to zoom
into a specific time interval and assess the depicted curve in
more detail. Panning allows the user to move the selected time
interval of interest, effectively moving the curve to the left or
right. The information seeking mantra states that users should
be able to get an overview first, then zoom and filter the data,
and finally query details on demand. Furthermore, axes can be
independently scaled or their data range confined. In the Activity
Plot’s initial configuration, which can be modified by the user,
both axes will be scaled in such a way that all retrieved firing rate

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 3 | Firing rate in spikes/s of simulated brain regions (Upper left) and total connections (Upper right) are retrieved while a NEST simulation is performed.

Time is measured in number update intervals. The steering interfaces (Control Panel and growth rate manipulation; bottom left and center) allow interactive parameter

space exploration which is synchronized with the current simulation. The growth rate (in 1 synaptic elements/ms) for each region can be controlled using the

corresponding slider. The region selector (far right) provides the means to filter the brain regions of interest depicted in the plots. The legends provided in each plot

denote the current selection from the region selector along with the color used to identify the corresponding curve. Specifically in the example shown, the labels e0 -

e10 and i0 - i5 identify the average firing rate for excitatory and inhibitory populations in network regions 0-10 accordingly. Labels r0 - r10 identify total outgoing

connections from network regions 0–10. Please refer to section 5.2 for more details on the network model used in this example. Please refer to the video Movie 1 in

Supplementary Material, for a detailed explanation of the tool’s interface.

values are visible. The tool also allows the user to export the plot
as a figure. To distinguish multiple curves, a color table can be
defined via the Color Editor (R5), as discussed below. A legend
in the upper left corner relates the selected populations to the
depicted curves shown in Figure 3 in the upper left window. In
addition, it shows the latest firing rate next to each population’s
legend label. The legends can be changed by the user of the tool.
In this work we use the label e and i to identify excitatory and
inhibitory populations and a number to identify the region they
belong to. Individual Activity Plots can be used in conjunction
with the region selector by specifying a population of interest.
Therefore, multiple plots can be used for comparison tasks (R1).
In this setup, the visualization ignores user input and is fixed to
the initial selection.

Connectivity Plot
TheConnectivity Plot (see Figure 3, upper right window) displays
the total number of connections for a population in accordance
with R3. Since structural plasticity is responsible for a change in

the total connections depending on the population’s firing rate,
the plot is the primary means to verify the structural plasticity
model. It shows the trajectories of the network in terms of its
structure. This visualization is connected to the region selector
and thus enables filtering of the populations to be displayed
(R4). Analogously to the Activity Plot, it is linked to the Color
Editor. Whenever attributes like color, line-style-drawing, or
thickness are changed, these values are applied. The legends can
be changed by the user of the tool. In this work we use the
label r and a number to identify the total connectivity values
for an specific region. Like the Activity Plot service, it offers
interactive zooming and panning functionality. Likewise, axes are
automatically scaled such that all retrieved connectivity values
are depicted. In addition, plots can be exported as figures for
publication purposes or the tracking of results.

Color Editor
TheColor Editor provides a graphical user interface that mediates
the customization of color, line drawing style, and line thickness

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

for each population’s firing rate and connectivity plots.Whenever
the user changes an entry, a “color changed” event is emitted
and processed by the Activity Plots and Connectivity Plots. In
addition, the color table is saved to disk for later reuse. Its
primary use is to help in distinguishing curves within the plotting
visualizations (R5). The Color Editor enables the customization
of the depicted firing rate and connectivity curves in the plot.
Here, users can select a color for a population’s inhibitory (I)
and excitatory (E) population by clicking on the corresponding
list entry. In addition, line drawing style and thickness can
be controlled. The population’s name is equal to its specified
counterpart in the simulation.

Manipulation of Structural Plasticity Parameters
The user interfaces for η and ν are the primary means of steering
the simulation for the parameter space exploration (R6 and
R7). This interface allows for the modification of the control
signals, enabling the structural plasticity algorithm to take the
system from its current state to a desired final state (see Figure 3,
bottom center). Both steering interfaces are designed as separate
standalone services that can be started within the Control Panel.
The η and ν services provide graphical user interfaces, each
presenting one slider for each population. Their influence on
the creation or deletion of synapses is indicated in Figure 1.
Each slider is named according to the population’s label and
shows the current value used in the simulation. Whenever the
user changes a value by adjusting the slider, an event is emitted
which is subsequently processed and applied by the simulation
in its next iteration step. The upper and lower limits for the
control parameters can be defined inside the scripts for each
controller interface. Please refer to the instrumentation manual
in Supplementary Material, for more details.

Loading and Saving Network States
To re-use previously found connectivity patterns in neighboring
points of the parameter space, we implemented a save and load
functionality (R10). The current values for η and ν are saved for
each population as well as the connectivity update interval. All
current connections between all neurons are also saved. These
connections are defined by a source neuron, a target neuron and
the synapse model which links them. Finally, the total number of
connections for each population are exported to a file which can
be used in the next phase of the simulation loop.

To re-use a previously created snapshot, we first load the types
of all synaptic elements for each population. When using the
structural plasticity framework in NEST, the first step consists of
defining the plastic synapses. This requires the specification of a
synapse model as well as the definition of pre- and post-synaptic
elements between which a synapse can be created. The growth
curves for these synaptic elements are reconstructed using the
stored values for η and ν. Then the synaptic elements are
registered in the structural plasticity framework and the update
interval is set for the simulation. This is performed by using the
set status functions of NEST through PyNEST/CyNEST (Eppler
et al., 2009; Zaytsev and Morrison, 2014). Finally, all connections
are recreated, marking them as non-static links which can be
modified by the structural plasticity algorithm. In this way, a new

network with differing global parameters such as global coupling
or inhibitory strength can start from a partial solution and arrive
at the target activity values more quickly. For more details about
the implementation of the structural plasticity framework please
refer to Diaz-Pier et al. (2016). This functionality can be triggered
from the Control Panel.

RESULTS

In this section, we present the results obtained from two use cases
in connectivity generation. For the first use case, the results of
running structural plasticity simulations before the interactive
visualization tool was developed were previously reported in
Diaz-Pier et al.(2016, Figure 5, section 3.3.1). Figure 4 (from this
current paper) shows the equivalent output for the second use
case, reflecting the previous visualization approach. Due to the
large number of unlabeled curves, the inability to focus on data
for particular populations and the lack of interactivity with the
visualization, using this static approach makes it very difficult for
the user to identify the evolution of connectivity in relation to
parameter changes. Moreover, a new simulation run is required
whenever any parameter needs to be changed. Even when some
regions have easily reached the target activity of 3 spikes/s,
for some set-ups it is extremely challenging to identify suitable
trajectories that lead to stable solutions for all populations.

In this type of simulation, the system is constrained by
connectivity data and desired activity levels obtained from
experimental measurements. However, these constraints still
allow the system to reach non-physiological states such as
saturating at high firing rates (see Figure 4). Moreover, the
system may follow several trajectories to reach these implausible
states, indicating that the system is under-constrained. On the
other hand, there are many admissible trajectories which take the
system to biologically plausible states. Biologically meaningful
trajectories should be identified by heuristics, expert knowledge,
and further experimental measurements gained through a deeper
understanding of the parameter space to which the neural circuit
is subject. At first glance, it is not clear how to explore the
parameter space in these complex systems, as the large number
of variables and long simulation times make it unfeasible to
find stable populations through a brute force approach, and no
heuristic is available to reduce the dimensionality.Without expert
knowledge in a closed loop setup, admissible trajectories are
fundamentally hard to find.

In the following sections, we demonstrate the challenges
of parameterizing network models and the potential for an
interactive visualization and steering tool, such as the one
we propose, to address them. All experiments have been
implemented with NEST 2.10.0 (Bos et al., 2015) and its Python
language bindings which are described in Eppler et al. (2009);
Zaytsev andMorrison (2014). The complete NEST scripts used in
this work can be found in a GitHub repository. For more details,
please see Supplementary Material.

Two Population Model
In this use case, we create a model with two populations
of point neurons, one excitatory and one inhibitory as

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 4 | Previous method of visualizing simulations: visualization of the simulation as performed before the presented tool was developed. The figure shows the

evolution of the average firing rate for each region (solid curves) and numbers of outgoing connections (dashed curves) from each region using structural plasticity in a

non-interactive (static) experiment. Each color represents a different population. In this static approach, a large number of independent simulator runs are performed

over a predetermined, non-interactive parameter space and then displayed with ad hoc scripts. Mapping the non-physiological solutions with saturated firing rates

onto regions of the parameter spaces is highly non-trivial (compare approach with Figure 3).

TABLE 1 | Network parameters for the first and second use cases.

Parameter Value

Capacitance of the membrane Cm 0.25 nF

Resting potential VL −65 mV

Threshold membrane potential Vthr −50 mV

Reset membrane potential Vres −65 mV

Refractory time τref 2 ms

Growth rate excitatory synaptic elements 0.0001 elements/ms

Growth rate inhibitory synaptic elements 0.0004 elements/ms

shown in Figure 5A. The whole network contains 1,000
leaky integrate-and-fire neurons with exponential-shaped post-
synaptic currents, of which 80% belong to the excitatory
population and the rest to the inhibitory population. Parameters
for the point neurons are listed in Table 1. All neurons receive
independent background excitatory Poisson noise at a rate of
10 kHz. At the beginning of the simulation, no connections
between neurons are present. The system is allowed to create
both excitatory and inhibitory connections (red and blue dashed
arrows, respectively, in Figure 5A), using the structural plasticity
framework in NEST. The weights for the created synapses are 1
and −1 respectively. The evolution of the firing rate (Figure 5C)
and the growth of connections (Figure 5C) is regulated by
two homeostatic rules defined by Gaussian curves, as shown
in Figure 5D. The target average activity of the inhibitory
population is set to 20 Hz while the target average activity in
the excitatory population is set to 5 Hz. Figure 5C shows the
evolution of the growth rate for excitatory synaptic elements
in both populations during a simulation. These dynamics
originate from the fixed firing rate curves shown in Figure 5B.
The structural plasticity algorithm uses that relation at every

simulation step to decide how many connections to create or
delete.

The evolution of the connectivity generation can be guided by
modifying the growth rate and shape of the Gaussian curve linked
to each type of connection. Figures 5D,E show an example of this
process. In this use case, an interesting feature to observe using
the visualization and steering tool is the path to the solution.
With the configurations used here, one can see how allowing
faster growth of inhibition triggers an overshoot in the generation
of excitatory connection to compensate. As a result, a rewiring
of the system is obtained. These paths to the solution can be
linked to onsets of critical periods in learning and healing or
by external stimulation (Hensch, 2005). By regulating the speed
of the creation of connections in the system, scientists can
explore different paths to solution where the relationship between
excitation and inhibition changes through time.

Figure 6 shows the evolution of growth rate (synaptic
elements/s), firing rate (Hz) and connectivity (total number
of connections) for six examples of the multiple trajectories
and connectivity configurations that the network can show. All
examples start with an initial growth rate of 0.0001 synaptic
elements/ms. Figure 6A shows a smooth growth similar to
Figure 5, but where the control signals have been modified to
reduce the overshoot in the inhibitory population. That is done
by reducing the initial growth rate to 0.00005 at iteration 8 (mark
a.1). Figure 6B shows an example of a simulation where the
control signals for growth start with aggressive growth values,
producing a constant oscillatory behavior. That is achieved by
changing the growth rate from 0.0001 to 0.0010 at iteration
38 (mark b.1) and then to 0.0030 at iteration 80 (mark b.2).
Following these signals, the connectivity update interval is
increased to 500 ms (from the standard length of 100 ms), which
produces a big oscillation, triggering a rewiring of the network
(mark b.3). Finally, growth is reduced to a slower pace, which
helps the system settle at a stable state. This reduction is achieved

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 5 | Evolution of firing rate and connectivity for the two population example: (A) abstract view of the model consisting of two populations, one excitatory (red)

and one inhibitory (blue) with respectively excitatory connections (red arrows) and inhibitory connections (blue arrows), both controlled by structural plasticity;

(B) Gaussian growth curves mapping current firing rate to growth rates (see Figure 1); (C) growth rate dynamics; (D) evolution of the firing rate; and (E) evolution of

the total number of connections during the simulation. Colors in (B–E) are as in (A).

by setting the growth rate to 0.00005 at update 161 (mark b.4).
The final connectivity is very similar to the one reached in
Figure 5. This example shows a different trajectory which reaches
the same final state.

Figure 6C illustrates very fast initial growth by changing
the growth to 0.004 at iteration 46 (mark c.1). Then, a sharp
reduction in growth when the system oscillates near the target
firing rate. The growth rate is changed to 0.0018 at iteration
98 and further down to 0.0007 at iteration 103 (marks c.2 and
c.3 accordingly). Figure 6D shows a case which seems stable in
terms of activity, but is unstable in terms of connectivity, as it
exhibits a constant race between excitation and inhibition in the

connectivity to maintain the target activity. The growth rate is set
to 0.001 at iteration 24 (mark d.1), to 0.0056 at iteration 52 (mark
d.2) and to 0.0020 at iteration 78 (mark d.3). Figure 6E shows a
trajectory which is not biologically meaningful. This network has
been built only from excitatory connections by modulating the
growth of connections very carefully around the target activity.
Here, we have defined a growth curve that does not allow the
creation of inhibitory connections unless the activity is above
the desired firing rate. Finally, in Figure 6F, we see a trajectory
which is not admissible (not biologically meaningful) because the
network is taken to an artificially high firing rates before it settles
back to its target. At iteration 17, the growth rate is set to 0.002

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 6 | Evolution of growth rate (Top), firing rate (Middle), and outgoing connections (Bottom) for six different trajectories (A–F) in the two population model use

case, excitatory (red) and inhibitory (blue). Vertical dashed lines correspond to manual changes using the graphic interface to the growth rate (top curves) or update

interval (at b.3) control variables. All other simulation parameters are held constant for all runs, including initial growth rate. Please see the main text for a discussion of

the features of each set of trajectories.

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

(mark f.1) and then slowly reduced to 0.00056 at iteration 60, to
0.0002 at iteration 80 and finally to 0.00005 at iteration 90 (marks
f.2, f.3, and f.4 accordingly). This graph shows how a network
can traverse biologically inadmissible trajectories and still reach
the target activity.

These results show that several instantiations of the same
system using different dynamics lead to the same target activity
but different connectivity patterns. Visualization and steering is
fundamental for producing, observing, studying and cataloging
these behaviors in the network. See Bahuguna et al. (2017) for an
example of the same phenomenon exhibited in a more complex
network. Thus using target activity as a tuning parameter without
this kind of exploration leads to selecting one of these network
connectivity states arbitrarily. The resulting model may not be
representative of the kinds of networks that produce this activity,
or of the target system to be modeled.

In other words, the target activity does not uniquely identify a
network, or even a contiguous volume of parameter space, but is
the property of a distribution of distinct networks distinguished
by parameters that are not the direct targets of research—this
class of inverse problem is degenerate. The network structure
may be critically path-dependent, dependent upon parameters
which are stochastic sequences (external control variables) or
even dependent upon numerically unstable parameter functions.
Simple networks such as the one shown in this example are
frequently used in computational neuroscience but rarely with
consideration to the careful characterization of the parameter
spaces. Thus, in the absence of analytical methods to identify
alternative solutions in the parameter space, steered visualization
is a highly effective method for producing, observing, comparing
and cataloging network configurations.

Whole Brain Simulation
This use case is inspired by a previous study by Deco et al.
(2014). The experiment consists of a whole brain simulation
using 68 interconnected brain regions, each of which represented
by a spiking network containing 200 conductance-based leaky
integrate-and-fire neurons, as illustrated in Figure 7A. The
original work by Deco et al. (2014) uses a Dynamic Mean Field
Model (DMFM) originally developed inWong andWang (2006).

The coupled non-linear stochastic equations of the DMFM
describe the behavior of mean-field neuronal regions and their
influence on each other:

ṡ = s/τs + (1− s)γH(x)+ σννν(t)

H(x) = (ax− b)/
(

1− exp
(

−d(ax− b)
)

)

x = wJNs+ GJNCs+ I0

(6)

where H represents the population firing rate function; s is
the vector representing the average gating variable for each
region; a, b, d, and σ are scaling parameters; γ and τs are
kinetic parameters; ννν is the stochastic input vector; w is the local
excitatory recurrence; JN is the synaptic coupling;G is the general
coupling factor; C is the connectivity matrix; Io is the effective
external current; and x is the state variable vector for the regions.
This model is applied in Deco et al. (2013) to describe a system

FIGURE 7 | Use case 1 inspired by Deco et al. (2014) whole brain model.

(A) Abstract representation of the whole brain model including 68 regions. A

subset of the regions is selected (pink area). The zoom-in view of one of the

regions shows the abstract model of each region, consisting of two

populations, one excitatory (red) and one inhibitory (blue). Inhibitory

connections to excitatory neurons in the same region (blue dashed arrow

labeled J) are subject to structural plasticity. (B) Activity Plot (see section 4.2.3)

of selected regions (0–10) as a function of biological time. Regions are

numbered from 0 to 67. Tags eX and iX identify curves for excitatory and

inhibitory populations in the Xth region. A legend (upper left) indicates the

current selection. The number following the colon after the tag is the region’s

firing rate during the last simulation step. Vertical dashed lines separate

sections of the simulation with differing values of the global connectivity

coupling (see section 5) , G = (A) 0.5; (B) 1.0; (C) 1.5; (D) 2.0. The vertical

dashed lines are superimposed on this plot and are not part of the Activity Plot

service. Increases to the global coupling parameter lead to an increase in the

strength of the connections between regions. The firing rate spikes initially as a

response to this change; in response, structural plasticity modifies connectivity

according to the homeostatic rules until the firing rate stabilizes again closer to

the target firing rate.

dominated at the measured time frame by NMDA gating, while
AMPA and GABA gating are neglected as “fast” variables. For a
complete description and analysis of the model, see Wong and
Wang (2006) and Deco et al. (2014).

Here, we apply a mapping from the DMFM to a network
of point neurons. In our simulation, each region contains two
populations, one excitatory (80% of the total neurons in the

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

region) and one inhibitory (20%). In this case, neurons in NEST
do not represent biological neurons but processing units whose
mathematical description at population level is equivalent to the
elements which comprise the DMFM. The initial parameters used
to set up the network are taken from Deco et al. (2013) and
detailed in Table 2. For a complete explanation of the model and
its motivation, see Deco et al. (2013) andWong andWang (2006).

Recurrent excitatory connections have a strength of 1.4 pA,
while recurrent inhibitory connections have a weight of
−1.0 pA. Each neuron per region initially receives 160 excitatory
connections from the local excitatory population. Only inhibitory
connections are created during the simulation (blue dashed
arrow tagged J in the region zoom in of Figure 7A) since
we are only interested in substituting the feedback inhibition
control algorithm described by Deco et al. (2014). The inter-
regional connectivity (black lines between regions in Figure 7A)
is specified from structural data obtained by DTI, which results
in a connectivity matrix C, but further regulated by the general
coupling parameter G, a multiplicative factor. This enables the
linear modification of the strength of the connections without
altering the ratio of connectivity among regions. Thus, the
total weight of the connections between regions is equal to
G · C pA. Each connection between regions is made between
a single representative neuron in each excitatory population.
Connections between regions are only excitatory. Additionally,
all neurons receive independent background input from a
Poisson generator producing spike trains with a rate of 11.9 kHz.

We followed the procedure described by Deco et al. (2014)
through the generation of synaptic activity, substituting the
feedback inhibition control used in that paper with our
interactive exploration method. The strength of the background
input was tuned to achieve a firing rate of 3 spikes/s for
the excitatory population and 8 spikes/s for the inhibitory
population when regions were isolated (without inter-region
connections). In Deco et al. (2014), an iterative tuning strategy
was used to determine the intra-region inhibition for the
DMFMs required to produce an activity profile consistent
with experimental observations. The key insight inspiring our
approach is that finding the intra-region inhibition can be
mapped on to determining the number of inhibitory connections
required to produce the same activity pattern in a multi-area
spiking neuronal network. Finding the right amount of inhibition
per region which satisfies all the dependencies is still a hardmulti-
objective optimization problem, especially if the space cannot be

TABLE 2 | Network parameters taken from Deco et al. (2013) for each region.

Parameter Excitatory neurons Inhibitory neurons

Number of neurons Nr 160 40

Capacitance of the membrane Cm 0.5 nF 0.2 nF

Membrane leak conductance gm 25 ns 20 ns

Resting potential VL −70 mV −70 mV

Threshold membrane potential Vthr −50 mV −50 mV

Reset membrane potential Vres −55 mV −55 mV

Refractory time τref 2 ms 1 ms

interactively explored. This is demonstrated in Figure 4, which
shows the result of simulating one static parameter setup for the
connectivity generation programmatically.

In this setup, the tool was used with different values for
the inter-region global coupling factor G. A complete view of
the visualization and steering tool for this use case is shown
in Figure 3. By using the tool, we detected that as G grows,
it becomes more difficult to bring all regions to the desired
activity state, and the standard deviation of the average firing
rate increases as well. G has this impact because any change in
one region due to G has a strong impact on all other regions
dynamically reacting to the change in G. This effect is visible in
Figures 7, 8, where the time it takes for all regions to stabilize
increases as the value of G grows.

We are also able to detect which regions are more crucial
for stability, since they have a higher inter-connectivity to other
regions. Figure 9 shows a comparison of the evolution of the
firing rate and outgoing connections of four regions. Each peak
shows an increment in the global coupling value G by 0.5,
starting from a base value of 0.5. Regions 25 and 63 show
large oscillations due to their high connectivity with multiple
other regions. Conversely, regions 0 and 10 rapidly reach a
stable state even for high values of G. This capacity for detailed
inspection allows the researcher to verify that all regions reach
the desired average activity while the simulation is running,
and thus drastically decreases turn-around times to research this
behavior.

The search algorithms proposed in Deco et al. (2014) and
Schirner et al. (2016) are based on an update pattern which (in the
same terms as the algorithms used in this work) can be described
by a fixed step update around the target activity, as shown in
Figure 10. The effectiveness of a fixed search approach in the
connectivity parameter space depends mainly on two factors.
First, the effectiveness is dependent on the size of the correlation
step. If the step is too small, it will take too long to reach the target
activity if the initial conditions are not close to the solution. If the
step is too large, the system will oscillate because the corrections
are too coarse. Second, the effectiveness is dependent on the
accuracy. The speed to find a solution is inversely proportional
to the desired accuracy. The correction step should also be
smaller than the accuracy, otherwise the system may oscillate
indefinitely around the final target state without ever reaching
a state with the desired accuracy. In summary, the ability of
the search algorithm to find a solution depends on the initial
conditions, the size of the update step and the desired accuracy.
Our proposed approach allows the size of the update step and
the speed with which changes take place to be adapted during
simulation. This solves the problem of the dependency between
step and accuracy and also allows the system to potentially find
a solution from a broader range of initial conditions due to the
capacity to increase the resolution of the search as the target state
is approached.

In addition to the advantages in speed and use of
computational resources which our expert-steered approach
confers over brute force parameter search (and which may, in
fact, be computationally intractable), the process of steering
allows the researcher more insight into the system. Whereas

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 8 | Total number of connections for selected regions (0–10) as a function of biological time. Colors are synchronized between this plot and the Color Editor.

Vertical dashed lines separate sections of the simulation with differing values of the global connectivity coupling (see section 5), G = (A) 0.5; (B) 1.0; (C) 1.5; (D) 2.0.

Regions are coupled and numbered from 0 to 67. Tag rX identifies the curve for the total number of connections corresponding to the Xth region.

in the first use case, the primary finding was that multiple
connectivity configurations can result in the same activity
profile, in the second use case we are able to identify which
regions are most critical for the overall network stability, as
illustrated in Figure 9. Thus, interactive visualization can support
the researcher in sensitivity analysis, which is essential for
understanding the main driving parameters of the model and for
making better inferences about the relations between parameters
and function. As with the multiple configurations observed in
the first use case, it is rare to encounter a network modeling
study in computational neuroscience where a sensitivity analysis
has been carried out (but see Bos et al., 2016 for a counter
example).

Usage of the Tool
In this section, we summarize the main steps required to use the
tool to take the system from its initial state to a final connectivity
setup where the target mean activity values are achieved. A
step-by-step tutorial video of carrying out parameter exploration
on a network using our tool is provided in Supplementary
Material (Movies 1, 2). In the following, we make reference to
the requirements listed in section 4. The first step during the
simulation steering is to determine which regions have one or
more of the following characteristics (R2–R5):

• the electrical activity is far from the target activity, and there
is no tendency of the system to correct for this error (or the
correction is too slow);

• the electrical activity oscillates around the target activity and

the oscillations are of equal or higher amplitude in each
cycle;

• or the number of connections does not converge even though

electrical activity is around the target activity.

This is achieved using the visualization tool by observing

the firing rate and connectivity plots. Figure 7 shows the
evolution of the firing rate for the first ten regions of the

brain model. Figure 8 shows the changes in connectivity

which are guided by the homeostatic growth rules defined

for the structural plasticity algorithm. Each curve in the plot

is uniquely identified by color and linked to a population
or region, thus enabling the assessment of the three above

listed characteristics. Reaching the targeted stable state

is indicated when all firing rate curves converge to the

target activities while the connection curves flatten to
horizontal lines. This allows the user to simply and effectively
identify which regions deviate from the target state and to
correct the structural parameters according to the following
criteria:

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

FIGURE 9 | Number of connections (Top) and firing rate (Bottom) shown in

comparison of four regions (0, 10, 25, 63). Vertical dashed lines separate

sections of the simulation with differing values of the global connectivity

coupling, G = (A) 0.5; (B) 1.0; (C) 1.5; (D) 2.0. Regions are numbered from 0 to

67. Tags eX and iX identify curves for excitatory and inhibitory populations in

the Xth region. The number at the side of the tags denotes the current value of

the average firing rate for each region.

• If the actual electrical activity is far away from the target
activity, the growth rate ν for that region should be increased
(R6).

• If the actual electrical activity oscillates around the target
activity, the growth rate ν for that region should be decreased
in small increments and the value of η should be reduced
to decrease the rate of change in the number of created and
deleted synaptic elements around the target point ε (R6–R7).

• If the number of connections does not converge, highly
interconnected regions should be identified and the growth
rate ν should be modified down in all of them (R7). In this

FIGURE 10 | Connectivity update rule employed in the algorithms proposed in

Deco et al. (2014) and Schirner et al. (2016), where a fixed value is added or

subtracted iteratively to the inner inhibitory connectivity until convergence to

the desired firing rate is achieved in each simulated region.

case, the update interval can also be modified to a smaller
value to have a faster response of the control changes in
the connectivity (R8). A shorter update interval allows better
and smoother control, but impacts the performance of the
simulation.

The resulting network state can be saved and used later
as a starting point for other parameter combinations,
thereby minimizing the need for further computations
using similar values of the global coupling term
(R9–R10).

Implementing Further Use Cases
Using an event-driven architecture, our framework provides
a convenient way for domain scientists to extend the tool
to their needs. This tool can be used with any neuron and
any synapse model in NEST, except for gap junctions. By
using the scripts provided in the Supplementary Material
(versions for all use cases discussed in this manuscript)
as templates, the user can easily change the neuron and
synapse model to explore the impact of these variations. An
instrumentation manual which specifies the steps required to
integrate the tool with other network models implemented in
NEST can be found as part of the Supplementary Material.
The instrumentation manual provides instructions based on
examples for NEST, but the tool can be adapted to other
simulators providing a Python interface by replacing the
corresponding functionality. However, if the simulator does not
provide an interface to Python, instrumentation will require

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

TABLE 3 | Estimation on the complexity to adapt the nettmessaging framework

to different steering and visualization use cases.

Challenge Solution Complexity

Change network topology Change number of

populations

Simple

Increase the size of the network Increase the number of

neurons in the simulation

script

Simple

Retrieve additional parameter Create new event definition Medium

Add a new model parameter Create new event definition Medium

Connect different simulators

with Python interface

Create new event definition

for the specific simulation

values

Medium-hard

No Python / C++ environment None Hard

substantial development effort by the user. Table 3 provides
estimates for the complexity of adapting the nettmessaging
library to different use cases. The complete tool and the
underlying messaging framework is open source (for further
details, see Supplementary Material).

Simulating on a Supercomputer
To leverage the power of supercomputers to reduce turn-around
times for parameter space exploration, the simulation scripts can
be adapted to use MPI. In this section, we show an example
of adapting the whole brain simulation use case described in
section 5.2 to supercomputers. To ensure that each process is in
sync with all steering commands, one process (rank 0) serves as
master. Only this master process establishes a connection to the
visualization front-ends and processes their steering events. Then
parameter synchronization is conducted via synchronization
barriers with the remaining compute nodes. The master process
is responsible for gathering the electrical activities and total
connections from all other compute nodes to finally send these
to the visualization front-ends.

After all the simulations had been parallelized, we adapted the
tool to cope with the supercomputing environment. A challenge
of the current usage conditions of most supercomputing
environments is their batch-mode operation where users submit
jobs which are granted compute time after a possibly long
delay; interactive supercomputing is still a work in progress as
outlined in Lippert and Orth (2014). Since our tool relies on a
network connection to NEST, the IP-address of the compute-
node running the simulator is unknown a priori. To circumvent
this issue, we rely on the supercomputer’s global file system: when
the simulation is granted compute time, the node’s IP-address
is obtained and written to disk. Subsequently, all visualization
services use this configuration file and connect to the given
address. However, one limitation of this approach is the need to
start the simulation first.

Since the visualization tools are independent of the
network topology and size, the scaling impact of the
network’s performance can be measured while neglecting
the communication overhead. To simulate a larger number of
populations with a larger number of neurons, it is crucial to

use supercomputers. To this end, we deployed the tool to the
JURECA supercomputer at the Jülich Super Computing Centre.
JURECA has 260 compute nodes with Intel Xeon E5 − 2680 v3
Haswell CPUs with 2 × 12 cores per CPU, 128 GB of RAM per
node and runs CentOS 7. To assess the speed-up obtained using
this machine, we used the third use case’s setup and measured the
execution times for 50 updates of connectivity in the network,
with an update interval of 100 ms. Using a full node on JURECA,
we were able to obtain a 2.94-fold speed-up compared to the
workstation setup, which uses 8 Intel Core i7 − 4710MQ CPUs
@ 2.50 GHz and 16 GB of RAM running on Ubuntu 16.10.

Figure 11 shows a strong scaling test for different numbers
of neurons per population. Simulation scalability increases
with the number of neurons per population—particularly for
8, 000 neurons per population (a total of 544, 000 neurons
in the network). This is due to the network size and spike
distribution overhead; larger networks benefit more from the
larger number of compute-nodes and overcomes the inter-
process communication and intra-process spike distribution
overhead up to the point that the global number of spikes
dominates performance (for a current discussion, see Jordan
et al., 2018). In addition, the number of synapses increases
quadratically with the number of neurons per population, which
highly impacts the scalability of the simulation.

On the other hand, visualization scalability is dominated by
the data gathering step at every update interval. For the case
of large networks like the 8, 000 neuron network, the impact of
the data gathering step can be reduced by gathering information
from only a portion of the network. A well selected statistical
sample would provide enough information about the ensemble
behavior of the populations while benefiting performance. The
current paradigm for the tool funnels data from a large
number of compute backends to a single frontend visualizer. In
order to scale with increasing numbers of backend nodes for
massive supercomputing, a more complex data flow and analysis
framework will be needed, such as a multi-node reduction stage
to reduce the impedance between the backends and frontend, as
well as reducing the load on the fronted. A generalized software
framework for such infrastructure to couple visualization with
supercomputing at scale is, to our knowledge, currently not
available, and is a work in progress.

DISCUSSION AND CONCLUSION

In this paper, we have introduced a visualization and steering tool
for the interactive analysis of connectivity generation in NEST.
To show its applicability, we have presented two use cases where
the tool was used to visualize and steer populations of point
spiking neurons to reach a desired target activity level. Our results
indicate that by interactively exploring the parameter space and
possible trajectories, scientists can gain a better understanding of
the system and concentrate on regions of biological interest, as
compared to a blind brute force exploration. The improvements
over brute force exploration are due to the effects of changes in
specific parameters in the network which can be visualized and
states outside the admissible regions which can be identified and

Frontiers in Neuroinformatics | www.frontiersin.org 17 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

5

Δ
T
im

e
 /

 Δ
C

o
re

 (
s
/c

o
re

)

Δ Cores

A

B

Neurons per Simulation

2

3

4

2

3

4

FIGURE 11 | Execution time as a function of the number of compute nodes for varying numbers of neurons per population: 50, 100, 200, 400, 800, and 8, 000;

curves shaded from light to dark. Dotted lines indicate ideal scaling, while solid lines represent experimental results. (A) The change in time consumed per core added.

Each point is the difference in the execution time divided by the difference in cores for consecutive points in (B); points are placed at the midpoint between the source

measurements. (B) The execution time for each simulation as the number of cores are varied; for the simulation with 8, 000 neurons per populations, measurements

were made only for 768–3,072 cores, since fewer cores leads to excessive time demands. The simulated biological time was 5 s using an update interval of 100 ms.

excluded from further simulation. These improvements lead to a
reduction in computational resources and an educated definition
of interesting parameters, states and trajectories.

In this work, we have presented results using the interactive
steering and visualization tool for two use cases where a desired
firing rate was set by the modeler at the beginning of the
simulation. We have used firing rate calculations produced
internally in NEST to guide the generation of connectivity. This
method for computing the mean firing rate can impact the
performance of the control system since controllability depends
on the delay between measuring an observable and producing a
response. However, the tool is independent of this calculation and
other techniques, such as spike train binning, can be used instead
to increase the controllability. Calculation of firing rates on
streams of spike trains might become computationally intensive
with increasing network size. Future implementation of other
techniques to increase the data gathering speed will lower delays
and allow other spike processing techniques to be efficiently
implemented as alternatives to the convolution approach.

The use cases presented were selected for their differing
degrees of complexity in terms of connectivity and network
definition. In the simple use case, different connectivity
configurations lead to the same activity profiles even when

some of the trajectories are biologically inadmissible. With our
approach, the user can concentrate on exploring only those
configurations which are of interest in answering the scientific
question posed. In Figure 6, we show different trajectories
produced using structural plasticity following homeostatic rules
to fit the system to a firing rate profile. Even the non-biological
parameters of the optimizing algorithm itself have an impact
on the final configuration of the network. For example, if one
performs a gradient descent to optimize the activity profile of a
network, the results will be sensitive to any arbitrary choice of
initial states of the populations and connectivity. With our tool
we can characterize the distribution of representative models and
results.

In the second use case, our tool also enables a sensitivity
analysis of the system by visualizing the effect that changes in the
connectivity have on the dynamics of the full system. Thus, the
user can draw better conclusions about the relationships between
the controllable parameters, in this case connectivity, and the
observables of the system, in this case the firing rate of each
population. We can see the relative sensitivity of the system to
the biologically relevant parameters (connectivity) and the non
biological parameters of the optimization algorithm. Our tool
can provide more insight into how different types of synapses are

Frontiers in Neuroinformatics | www.frontiersin.org 18 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

created or modified in the neural circuit to give rise to different
features in the dynamics of the system.

As we have discussed in this paper, a brute force exploration of
the parameters of a network can easily become a computationally
intractable problem. Choosing a single random configuration
or even only a small sample of configurations from the whole
space without a proper characterization of their distribution
is unlikely to lead to a statistically valid distribution of the
results. Interactive visualization is a way to move toward
statistically validated conclusions as it allows an assessment of the
essential features of the system, ultimately leading to automated
sampling.

While the resulting connectivity patterns are not
necessarily unique, our approach enables exploration and
assessment of these solutions and their paths. The main
contribution of this approach is the use of interactive
visualization and parameter control techniques. These
techniques allow the system to be controlled and stabilized
within a physiological configuration space by an expert.
When increasing the number of neurons and populations,
the number of parameters to tune increases, resulting
in an ever harder-to-reach stable state. Thus, interactive
visualization becomes even more important. The knowledge
gained through interactive exploration can lead to the
development of automated tools assisting in the parameter
space exploration.

Using this approach, we can reduce the turn-around times
of exploring different connectivity configurations in comparison
to simulating all possible parameter configurations and assess
reasonable configurations in a later phase. The speed-up achieved
by this exploration is mainly due to four factors. First, it is
not necessary to simulate the system for long times iteratively;
instead, the modifications are performed on demand. Second,
partial solutions can be reused for different global parameter
combinations, resulting in the reduction of total computational
costs. Third, the user can visualize the behavior of the system’s
observables with respect to individual parameters, allowing
the user to isolate regions of interest and form a better
understanding. Finally, we can study the transition points in the
activity of the networks, which are produced by the underlying
connectivity variations, and interact with the tuning algorithms
by visualizing their impact.

As stated before, the connectivity solutions and paths to
solutions for the presented use cases are not unique, rendering a
knowledgeable exploration process crucial. Thus, the interactive
analysis process can help the user accomplish the following:

1. Form an understanding of the implication of different
parameter setups for each network model.

2. Validate the models.
3. Define biologically meaningful populations of interest for the

simulation.
4. Derive measures for the automatic or semi-automatic

assessment of the models’ behavior leading to automated tools
guiding the exploration process.

While the generation of connectivity based on empirical
constraints for the dynamic system or experimental data

inherently leads to non-unique solutions and especially solutions
which are physiologically implausible, the ability to identify and
explore subsets of the solution space is valuable to form an
understanding of the dynamic nature of these systems.

In this work, we have formalized the effects of dynamic
connectivity of a network in terms of control theory. We take
into account that the network starts at an initial state and
is taken to a final state through the introduction of control
signals which alter the connectivity of the network. In this
case, control of the synapse creation and deletion is induced
by the structural plasticity algorithm. The eigenvalues of the
Liouvillian of the network are thus modified with these signals
through the evolution of the simulation and the state of the
neurons in the network is changed. Visualization shows the
immediate effects of the control signals in the system. The results
shown in section 5.1 exemplify how even a simple network can
traverse different admissible trajectories (Figures 6A–E) using
different elements from the set of all possible controls. We
show how the unconstrained system can traverse an inadmissible
trajectory (Figure 6F) or end in states outside of the admissible
set (Figure 6D). We have also seen how inadmissible control
signals are still able to give rise to admissible trajectories and final
states (Figure 6E).

We adapted the tool to scale with supercomputers allowing
larger networks to be simulated and finer simulation stepping
to be used, thus achieving more accurate results. This way,
researchers can explore the manifold solutions and paths of
connectivity satisfying average activity targets in a variety
of neural network models. Our tool gathers data from the
simulation at specific intervals, which impacts the performance as
the networks become larger. Continuously streaming data from
of the simulation by using, for example, MUSIC (Djurfeldt et al.,
2010) or the NEST I/O backends can reduce this bottleneck and
allow greater flexibility in the network size.

In summary, our interactive tool provides the means to
visualize and steer connectivity generation of a running NEST
simulation to stabilize complex non-linear systems. The applied
concepts of the tool are generalizable and extensible to other
types of systems with similarly large degrees of freedom.
Adapting and exploring further model parameters, e.g., synaptic
weights and delays, background input frequency, and variation in
weights of spike-timing-dependent plasticity synapses is possible.
Our implementation is open to the public (see Supplementary
Material).

In the future, we would like to explore further techniques
to track already explored parameter spaces, to develop semi-
automatic systems to guide researchers in tracking manifold
solution spaces and to extend the tool to support further use
cases. Currently, the saved state refers only to the connectivity
and last values of all variables at the time of saving. We are
working to provide a visualization that shows parameter changes
for reproducing all trajectories. For the moment, the loading
features are limited and the subject of future work. In addition,
we are adding support for machine learning algorithms coupled
with the interactive exploration for various network variables
beyond connectivity. Our goal is to to detect oscillations and
other troubling behavior in the network using machine learning

Frontiers in Neuroinformatics | www.frontiersin.org 19 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

and then to correct this behavior by use of the controllers. Other
target control measures such as power-spectrum shape and inter-
population correlations may be interesting as complex control
variables in the context of machine learning. The modularity of
the software, primarily derived from applying an event driven
design, allows for such additions in a non-intrusive manner.

Linking the time axes of the activity and connection plots
to allow for coordinated zooming is currently not supported
but would be a useful extension to the analysis workflow.
A visualization of changes in the network’s eigenvalues as
connectivity evolves is also subject to future work. The creation
of additional plots for further variables is simple and can be
achieved by adapting the scripts used in the presented use cases
(see Supplementary Material). Connecting another visualization
application to the NEST simulator is in principle feasible but
requires adapting the visualizer to our communication protocol.

We argue that it is crucial to explore the distribution of
paths to solutions instead of focusing on just a possible solution
satisfying a set of constraints. To develop this understanding,
interactive exploration of dynamic systems is a key tool
for developing mathematical intuition, and thus for deriving
mathematically robust descriptions. These descriptions are then
amenable to further automated investigation of characteristic
solution ensembles.

AUTHOR CONTRIBUTIONS

CN and SD-P have contributed equally to this paper. CN
developed the interactive steering tool and the framework.
In addition, he designed the data flow for steering the main
structural plasticity parameters. SD-P, AP, and AM defined the
use cases. SD-P evaluated the results and compared the process
of parameter navigation with and without the steering tool. AP
provided the high performance computing knowledge to port
and optimize the code for supercomputing usage. BW, BH, and
TK provided scientific guidance on the visualization tool. AM
provided neuroscientific guidance and assessed the usability of
the tool for generalized use cases. CN, SD-P, AM, and AP wrote
the paper.

FUNDING

The authors would like to acknowledge the support by
the Excellence Initiative of the German federal and state

governments, the Jülich Aachen Research Alliance—High-
Performance Computing, the Helmholtz Association through the

portfolio theme Supercomputing and Modeling for the Human
Brain (SMHB) and the Initiative and Networking Fund. In
addition, this project has received funding from the European
Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No 720270 (HBP SGA1) and No 785907
(HBP SGA2). Finally, this project has received funding from the
German Federal Ministry of Education and Research (“D-USA
Verbund: Mechanistische Zusammenhänge zwischen Struktur
und funktioneller Dynamik immenschlichenGehirn,” project no.
01GQ1504B). Responsibility for the content of this publication
belongs to the authors.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00032/full#supplementary-material

Movie 1 | Introduction to the interactive steering and visualization tool.

Movie 2 | Using the interactive steering and visualization tool in a specific use

case for structural plasticity in NEST.

Presentation 1 | Instrumentation manual.

We have included two videos as Supplemental Material that
demonstrate our visualization tool. The first video presents its
basic structuring and functionality. The second one discusses
one use case for structural plasticity and explains how the tool
can help in the assessment of the simulation. Moreover, we
have included an instrumentation manual describing the general
process for modifying simulation scripts in order to use the tool.

The nettmessaging framework can be downloaded at https://
devhub.vr.rwth-aachen.de/VR-Group/nett.git, and https://
devhub.vr.rwth-aachen.de/VR-Group/nett-python.git. The
NEST structural plasticity framework can be found at https://
github.com/sdiazpier/nest-simulator.git, branch sp_rate and
tag sp_viz_rate.

The visualization tool, simulation scripts for both use cases,
and a user manual to build the code can be found at https://
github.com/sdiazpier/isv_neuroscience. In addition to the use
cases discussed in this work, a script showing the instrumentation
of the cortical microcircuit model (Potjans and Diesmann, 2014)
is also provided in the aforementioned git repository.

REFERENCES

Abram, G., and Treinish, L. (1995). “An extended data-flow architecture for

data analysis and visualization,” in Proceedings of the 6th Conference on

Visualization’95 (Washington, DC: IEEE Computer Society), 263.

Bahuguna, J., Tetzlaff, T., Kumar, A., Hellgren Kotaleski, J., and Morrison,

A. (2017). Homologous basal ganglia network models in physiological

and parkinsonian conditions. Front. Comput. Neurosci. 11:79.

doi: 10.3389/fncom.2017.00079

Bakker, R., Wachtler, T., and Diesmann, M. (2012). Cocomac 2.0

and the future of tract-tracing databases. Front. Neuroinform. 6:30.

doi: 10.3389/fninf.2012.00030

Bos, H., Diesmann, M., and Helias, M. (2016). Identifying anatomical origins

of coexisting oscillations in the cortical microcircuit. PLoS Comput. Biol.

12:e1005132. doi: 10.1371/journal.pcbi.1005132

Bos, H., Morrison, A., Peyser, A., Hahne, J., Helias, M., Kunkel, S., et al. (2015).

NEST 2.10.0.

Boukhelifa, N., and Rodgers, P. J. (2003). A model and software system for

coordinated and multiple views in exploratory visualization. Inform. Visuali.

2, 258–269. doi: 10.1057/palgrave.ivs.9500057

Butz, M., and van Ooyen, A. (2013). A simple rule for dendritic spine and

axonal bouton formation can account for cortical reorganization after focal

retinal lesions. PLoS Comput. Biol. 9:e1003259. doi: 10.1371/journal.pcbi.10

03259

Frontiers in Neuroinformatics | www.frontiersin.org 20 June 2018 | Volume 12 | Article 32

https://www.frontiersin.org/articles/10.3389/fninf.2018.00032/full#supplementary-material
https://devhub.vr.rwth-aachen.de/VR-Group/nett.git
https://devhub.vr.rwth-aachen.de/VR-Group/nett.git
https://devhub.vr.rwth-aachen.de/VR-Group/nett-python.git
https://devhub.vr.rwth-aachen.de/VR-Group/nett-python.git
https://github.com/sdiazpier/nest-simulator.git
https://github.com/sdiazpier/nest-simulator.git
https://github.com/sdiazpier/isv_neuroscience
https://github.com/sdiazpier/isv_neuroscience
https://doi.org/10.3389/fncom.2017.00079
https://doi.org/10.3389/fninf.2012.00030
https://doi.org/10.1371/journal.pcbi.1005132
https://doi.org/10.1057/palgrave.ivs.9500057
https://doi.org/10.1371/journal.pcbi.1003259
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Nowke et al. Interactive Visualization and Steering of Connectivity Generation

Childs, H., Brugger, E. S., Bonnell, K. S., Meredith, J. S., Miller, M., Whitlock,

B. J., et al. (2005). “A contract-based system for large data visualization,” in

Proceedings of IEEE Visualization 2005 (Minneapolis, MN), 190–198.

Cowan, J. D. (1991). “Stochastic neurodynamics,” in Advances in Neural

Information Processing Systems (Denver, CO), 62–69.

Cubitt, T. S., Eisert, J., and Wolf, M. M. (2012). Extracting dynamical

equations from experimental data is NP hard. Phys. Rev. Lett. 108:120503.

doi: 10.1103/PhysRevLett.108.120503

Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G. L., Mantini,

D., and Corbetta, M. (2014). How local excitation–inhibition ratio

impacts the whole brain dynamics. J. Neurosci. 34, 7886–7898.

doi: 10.1523/JNEUROSCI.5068-13.2014

Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., and

Corbetta, M. (2013). Resting-state functional connectivity emerges from

structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33,

11239–11252. doi: 10.1523/JNEUROSCI.1091-13.2013

Diaz-Pier, S., Naveau,M., Butz-Ostendorf, M., andMorrison, A. (2016). Automatic

generation of connectivity for large-scale neuronal network models through

structural plasticity. Front. Neuroanat. 10:57. doi: 10.3389/fnana.2016.00057

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans,

T. C., et al. (2010). Run-time interoperability between neuronal network

simulators based on the music framework. Neuroinformatics 8, 43–60.

doi: 10.1007/s12021-010-9064-z

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).

PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008

Fabian, N., Moreland, K., Thompson, D., Bauer, A. C., Marion, P., Geveci, B., et al.

(2011). “The paraview coprocessing library: a scalable, general purpose in situ

visualization library,” in LDAV, eds D. Rogers and C. T. Silva (Providence, Rl:

IEEE), 89–96.

Henderson, A. (2004). The ParaView Guide: A Parallel Visualization Application.

Clifton Park, NY: Kitware.

Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nat. Rev.

Neurosci. 6, 877–888. doi: 10.1038/nrn1787

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops to

exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Kammara, A. C., Palanichamy, L., and König, A. (2016). Multi-objective

optimization and visualization for analog design automation. Complex Intell.

Syst. 2, 251–267. doi: 10.1007/s40747-016-0027-3

Kirk, D. (2012). Optimal Control Theory: An Introduction. Dover Books on

Electrical Engineering. Mineola, NY: Dover Publications.

Lippert, T., and Orth, B. (2014). Supercomputing Infrastructure for Simulations of

the Human Brain. Cham: Springer International Publishing.

López-Cuevas, A., Castillo-Toledo, B., Medina-Ceja, L., and Ventura-Mejía,

C. (2015). State and parameter estimation of a neural mass model from

electrophysiological signals during the status epilepticus. NeuroImage 113,

374–386. doi: 10.1016/j.neuroimage.2015.02.059

Matković, K., Gračanin, D., Jelović, M., and Hauser, H. (2008). Interactive visual

steering-rapid visual prototyping of a common rail injection system. IEEE

Trans. Visual. Comput. Graph. 14, 1699–1706. doi: 10.1109/TVCG.2008.145

Matković, K., Gračanin, D., Splechtna, R., Jelović, M., Stehno, B., Hauser, H., et al.

(2014). Visual analytics for complex engineering systems: hybrid visual steering

of simulation ensembles. IEEE Trans. Visual. Comput. Graph. 20, 1803–1812.

doi: 10.1109/TVCG.2014.2346744

Michelson, B. M. (2006). Event-driven architecture overview. Patricia Seybold

Group 2:12. doi: 10.1571/bda2-2-06cc

Migliore, M., Cavarretta, F., Hines, M. L., and Shepherd, G. M. (2014).

Distributed organization of a brain microcircuit analyzed by three-

dimensional modeling: the olfactory bulb. Front. Comput. Neurosci. 8:50.

doi: 10.3389/fncom.2014.00050

North, C., and Shneiderman, B. (1997). A Taxonomy of Multiple Window

Coordination Technical Research Report. College Park, MD: Institute for

Systems Research. Available online at: http://hdl.handle.net/1903/5892

North, C., and Shneiderman, B. (2000). “Snap-together visualization: a user

interface for coordinating visualizations via relational schemata,” in Proceedings

of the Working Conference on Advanced Visual Interfaces, AVI ’00 (New York,

NY: ACM), 128–135.

Nowke, C., Zielasko, D., Weyers, B., Hentschel, B., Peyser, A., and Kuhlen, T.

(2015). Integrating visualizations into modeling NEST simulations. Front.

Neuroinform. 9:29. doi: 10.3389/fninf.2015.00029

Ohira, T., and Cowan, J. D. (1993). Master-equation approach to stochastic

neurodynamics. Phys. Rev. E 48:2259. doi: 10.1103/PhysRevE.48.2259

Park, I. M., Seth, S., Paiva, A. R. C., Li, L., and Principe, J. C. (2013). Kernel methods

on spike train space for neuroscience: a tutorial. IEEE Signal Process. Mag. 30,

149–160. doi: 10.1109/MSP.2013.2251072

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Roberts, J. C. (2007). “State of the art: coordinated & multiple views in exploratory

visualization,” in Fifth International Conference on Coordinated and Multiple

Views in Exploratory Visualization (CMV 2007) (Zurich), 61–71.

Roy, D., Sigala, R., Breakspear, M., McIntosh, A. R., Jirsa, V. K., Deco, G.,

et al. (2014). Using the virtual brain to reveal the role of oscillations and

plasticity in shaping brain’s dynamical landscape. Brain Connect. 4, 791–811.

doi: 10.1089/brain.2014.0252

Ryu, Y. S., Yost, B., Convertino, G., Chen, J., and North, C. (2003).

Exploring cognitive strategies for integrating multiple-view visualizations.

Proc. Hum. Fact. Ergonom. Soc. Annu. Meeting 47, 591–595.

doi: 10.1177/154193120304700371

Schirner, M., McIntosh, A. R., Jirsa, V., Deco, G., and Ritter, P. (2016). Bridging

multiple scales in the human brain using computational modelling. bioRxiv.

doi: 10.1101/085548

Schuecker, J., Schmidt, M., van Albada, S. J., Diesmann, M., and Helias, M.

(2015). Fundamental activity constraints lead to specific interpretations of the

connectome. arXiv:1509.03162.

Sedlmair, M., Heinzl, C., Bruckner, S., Piringer, H., and Möller, T. (2014). Visual

parameter space analysis: a conceptual framework. IEEE Trans. Visual. Comput.

Graph. 20, 2161–2170. doi: 10.1109/TVCG.2014.2346321

Shneiderman, B. (1996). “The eyes have it: a task by data type taxonomy for

information visualizations,” in Proceedings 1996 IEEE Symposium on Visual

Languages (San Francisco, CA), 336–343. doi: 10.1109/VL.1996.545307

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome:

a structural description of the human brain. PLoS Comput. Biol. 1:e42.

doi: 10.1371/journal.pcbi.0010042

Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A. (2000). “Guidelines

for using multiple views in information visualization,” in Proceedings of the

Working Conference on Advanced Visual Interfaces - AVI ’00 (New York, NY),

110–119.

Weaver, C. (2004). “Building highly-coordinated visualizations in Improvise,”

in IEEE Symposium on Information Visualization, 2004 (Austin, TX: IEEE

Computer Society), 159–166.

Whitlock, B., Favre, J. M., and Meredith, J. S. (2011). “Parallel in situ coupling

of simulation with a fully featured visualization system,” in EGPGV (Bangor),

101–109.

Wong, K.-F., and Wang, X.-J. (2006). A recurrent network mechanism

of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328.

doi: 10.1523/JNEUROSCI.3733-05.2006

Zaytsev, Y. V., and Morrison, A. (2014). CyNEST: a maintainable Cython-

based interface for the NEST simulator. Front. Neuroinform. 8:23.

doi: 10.3389/fninf.2014.00023

Zaytsev, Y. V., Morrison, A., and Deger, M. (2015). Reconstruction of recurrent

synaptic connectivity of thousands of neurons from simulated spiking activity.

J. Comput. Neurosci. 39, 77–103. doi: 10.1007/s10827-015-0565-5

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Nowke, Diaz-Pier, Weyers, Hentschel, Morrison, Kuhlen and

Peyser. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 21 June 2018 | Volume 12 | Article 32

https://doi.org/10.1103/PhysRevLett.108.120503
https://doi.org/10.1523/JNEUROSCI.5068-13.2014
https://doi.org/10.1523/JNEUROSCI.1091-13.2013
https://doi.org/10.3389/fnana.2016.00057
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1038/nrn1787
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1007/s40747-016-0027-3
https://doi.org/10.1016/j.neuroimage.2015.02.059
https://doi.org/10.1109/TVCG.2008.145
https://doi.org/10.1109/TVCG.2014.2346744
https://doi.org/10.1571/bda2-2-06cc
https://doi.org/10.3389/fncom.2014.00050
http://hdl.handle.net/1903/5892
https://doi.org/10.3389/fninf.2015.00029
https://doi.org/10.1103/PhysRevE.48.2259
https://doi.org/10.1109/MSP.2013.2251072
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1089/brain.2014.0252
https://doi.org/10.1177/154193120304700371
https://doi.org/10.1101/085548
https://doi.org/10.1109/TVCG.2014.2346321
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.3389/fninf.2014.00023
https://doi.org/10.1007/s10827-015-0565-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Toward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive Visualization and Steering of Connectivity Generation
	Introduction and Related Work
	General Form of Network Dynamics
	Control Theory for Network State Trajectories

	Connectivity Generation in Neural Networks
	In Situ Visualization and Steering of Connectivity Generation
	Simulation Instrumentation
	Visualization System Overview
	Control Panel
	Region Selector
	Activity Plot
	Connectivity Plot
	Color Editor
	Manipulation of Structural Plasticity Parameters
	Loading and Saving Network States

	Results
	Two Population Model
	Whole Brain Simulation
	Usage of the Tool
	Implementing Further Use Cases
	Simulating on a Supercomputer

	Discussion and Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References

