
Complexity Estimation for Feature Tracking Data

Dirk N. Helmrich*, Andrea Schnorr*, Torsten W. Kuhlen*, and Bernd Hentschel*

JARA – High-Performance Computing, Aachen, Germany
Visual Computing Institute, RWTH Aachen University, Germany

Figure 1: Left: Synthetic Voronoi data set to mimick the behavior of dissipation elements. Points are seeded randomly inside this
data set and each volume cell is labeled with its cell center. These are colored by cell center ID. Middle: Dissipation element data
set, colored by ID Right: Dissipation element data set, colored by predicted complexity of the problem

ABSTRACT

Feature tracking is a method of time-varying data analysis. Due to
the complexity of the underlying problem, different feature tracking
algorithms have different levels of correctness in certain use cases.
However, there is no efficient way to evaluate their performance
on simulation data since there is no ground-truth easily obtainable.
Synthetic data is a way to ensure a minimum level of correctness,
though there are limits to their expressiveness when comparing the
results to simulation data. To close this gap, we calculate a synthetic
data set and use its results to extract a hypothesis about the algorithm
performance that we can apply to simulation data.

Index Terms: Human-centered computing—Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

Feature tracking algorithms are means to connect time-varying re-
gions over a series of discrete time steps. These structures are ex-
plicitly extracted in each time step, and tracking algorithms are used
to determine their temporal evolution. That way, time-depended
phenomena can be visualized. The main terminology of feature
tracking was developed by Samtaney et al. [4] and Silver et al. [6, 7]
and was since used in most publications. Recent work has focused
on speeding up the process of feature tracking, or making the results
more reliable and provide visualizations for them. Sauer et al. [5]
used particle trajectories to enable a fast approximation of subse-
quent feature objects even if time steps are skipped. Oster et al. [2]
created a tracking approach for flame surfaces which utilizes implicit
surface tracking to enable the in-situ based assignment computation,
i.e., doing a feature tracking analysis step during the runtime of the

*E-mail: {helmrich, schnorr, kuhlen, hentschel}@vr.rwth-aachen.de

simulation. They evaluated their results using an analytic function
for which the results are deterministic.

Here, we focus on the evaluation of feature tracking algorithms,
or more specific; we predict algorithm behavior and correctness
on synthetic data and apply the model to simulation data. To do
this, we create a 3D-Voronoi graph in which we consider each
Voronoi cell as feature object. Through point manipulation, we can
produce deterministic temporal behavior, such as movement, and
even splits and merges. For the Voronoi graph, there is a ground
truth against which to compare tracking algorithms. We describe the
feature tracking problem for each feature object statistically, making
it possible to apply its predicted complexity to a cubic isotropic
turbulence data set. This simulation data set consists of 2563 cubes
of space-filling dissipation elements [3], which are numerically
defined as regions whose point trajectories end and begin in the
same min/max pair within the data set. It is shown in Fig. 1, middle.

2 DATA GENERATION

To generate an acceptable data basis, an evaluation data set was
created that consists of a 2563-cube filled with Voronoi cells, as
shown in Fig. 1, left. These Voronoi cells are generated from a
uniformly distributed point set. Feature movement and events are
created by point manipulation and point displacement. To mimic
a feature split, we seed a point very close to another one, which
splits the Voronoi cell in half. For a merge event, two points move
close to another and when their distance has reached a threshold,
the points are collapsed into one, making the Voronoi cells merge
together. Note that Voronoi graphs, just like dissipation elements
are inherently space-filling. This means that mimicking death or
birth events may not be needed. For a death event, the space of
a disappearing element is immediately taken up by neighboring
features and as such, a merge is the more viable explanation.

To be able to viably ensure that our complexity estimation is use-
ful, we use a widely-accepted and published tracking algorithm by
Silver et al. [6]. The paper uses a threshold-bounded local optimiza-

2018 IEEE 8th Symposium on Large Data
Analysis and Visualization (LDAV)
21 October 2018, Berlin, Germany
978-1-5386-6873-3/18/$31.00 ©2018 IEEE

tion based on its difference measure. We can determine algorithm
behavior, based on an ordering of elements, and taking into account
the threshold-bounded local optimization they use, by determining
whether the ground truth is the local optimum. Without loss of gen-
erality, we fix an ordering P= {i0, i1, · · · , in} on the feature object
set and a threshold τ . The ordering is used to determine whether
the local optimum can be reached or if its corresponding feature
objects were already removed from the search space. The tracking
algorithm by Silver et al. uses the normalized maximum set dif-
ference as a dissimilarity measure between a feature object and an
overlapping combination of features. The configuration depends
largely on a threshold value τmax, since the local minimum is only
chosen if smaller than τmax. Obviously, the predicted complexity of
the simulation data will also depend on the threshold value chosen.
For most feature tracking algorithms, even if there is a prediction
step involved, we can calculate some kind of feature object similarity
that describes the tracking problem in an expedient fashion.

Since we know in what way the algorithm behaves, it is easier to
ensure that the complexity mapping is correct. We run the tracking
algorithm on the synthetic 3D-Voronoi graph and quantify its error
rate. It is calculated by the ratio of the detected correspondences to
all within the ground truth, times the ratio of valid correspondences
to all found by the algorithm. For each feature object and its possible
successors, we approximate a kernel distribution K, for which we
calculate mean, variance, minimum and maximum. Regarding only
the local optimization itself, these values provide a good problem
description. This can be extended to include error sources like
numerical instability by, e.g., providing a normalized size or shape
indicator. We also calculate these values for dissipation elements
and each combination of feature objects within the simulation data.

3 ERROR RATE ANALYSIS

Using this calculation as a learning basis, and taking into account the
weighting and order of each feature object, we investigated multiple
approximation models for their validity and accuracy. For the final
mapping, we use a boosted decision tree model [1] that had a root-
mean-square deviation of 0.074 on a data set of 240,000 Voronoi
cells over 1,000 time steps. The runtimes of the process are depicted
in Tab. 1. This regression model contains a hypothesis about which
factors contribute to the complexity of the correspondence problem.
Using the trained model, we apply its predictions to the dissipation
element data. In Fig. 1, right, such a mapping is shown, where
a grey region is predicted to be quite simple to track, while a red
region is more difficult. The overall data set is rated as quite simple,
though there are spots of difficult regions throughout the data set.
Note that the algorithm by Samtaney et al. is indeed order depended,
however, we did not use this information to train the predictor.

To inspect the validity of our prediction, we inspect individual
dissipation elements from the simulation data, especially those that
were predicted to be difficult to track. While there is no ground
truth for the simulation data, we can inspect certain feature object
combinations for which we know that the algorithm will behave in a
certain way. In this fashion, we can check if the complexity predictor
holds true for this case and if it is a viable technique to pre-scan data
sets based on a feature tracking approach for evaluation purposes.
By manual inspection, we can determine whether the algorithm’s
solution is likely to be correct or not. Closer inspection of the marked
areas shows that the error rate in complex regions indeed seems to
be higher. Fig. 2 shows such an error. The corresponding element
is shown in red and its chosen successor is shown in grey. Figure
2 shows that there is, indeed, a large area for which there should
be a successor. Since this successor was not found, the predictor
correctly marked this dissipation element as hard to track. While a
such a turbulence is a quite abstract use-case, it shows that synthetic
data sets, even simple ones such as Voronoi graphs, can be used to
inspect algorithms for their behavior in real-world data. Furthermore,

such a mapping of problem complexity on the simulation space can
provide insight into the algorithm and the way the data set itself
behaves. Using a more sophisticated algorithm as basis, it would
enable inspecting the simulation data for numerical instability or
highly complex behavior.

Figure 2: A dissipation element from the simulation data (red) which
is predicted to be quite hard to track. The gray region is the only
associated feature object. Note that there is a red region for which no
successor has been found.

Table 1: Runtimes of the analysis

Volume Data Processing 4468.8 ms
Data Preparation 1766.19 ms
Regression Learner 134.3 s
Model Applying 7781 ms

4 CONCLUSION

We used a fairly medium-sized synthetic data set to calculate a model
that predicts problem complexity from kernel value distributions. We
applied this model to a standard data set in which we inspected the
validity of the mapping. We showed that this is a viable approach
to inspect algorithm behavior on simulation data, which can be
extended beyond evaluation.

ACKNOWLEDGMENTS

The authors would like to acknowledge the funding provided by
the DFG under grant KU 1132/10-1, and the German Excellence
Initiative, JARA High-Performance Computing.

REFERENCES

[1] C. M. Bishop. Pattern recognition and machine learning (information
science and statistics).

[2] T. Oster, A. Abdelsamie, M. Motejat, T. Gerrits, C. Rössl, D. Thévenin,
and H. Theisel. On-the-fly tracking of flame surfaces for the visual
analysis of combustion processes. In Computer Graphics Forum, vol. 37,
pp. 358–369. Wiley Online Library, 2018.

[3] N. Peters and L. Wang. Dissipation element analysis of scalar fields in
turbulence. Comptes Rendus Mécanique, 334(8):493–506, 2006.

[4] R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing Features
and Tracking Their Evolution. IEEE Computer, 27(7):20–27, 1994. doi:
10.1109/2.299407

[5] F. Sauer, H. Yu, and K.-L. Ma. Trajectory-Based Flow Feature Tracking
in Joint Particle/Volume Datasets. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2565–2574, Dec. 2014. doi: 10.1109/
TVCG.2014.2346423

[6] D. Silver and X. Wang. Volume Tracking. In Proceedings of IEEE
Visualization, pp. 157 – 164, 1996. doi: 10.1109/VISUAL.1996.567807

[7] D. Silver and X. Wang. Tracking and Visualizing Turbulent 3D Features.
IEEE Transactions on Visualization and Computer Graphics, 3(2):129–
141, 1997. doi: 10.1109/2945.597796

	Introduction
	Data Generation
	Error Rate Analysis
	Conclusion

