Indirect User Guidance by Pedestrians in Virtual Environments

Andrea Bönsch, Katharina Güths, Jonathan Ehret, Torsten W. Kuhlen Visual Computing Institute, RWTH Aachen University

Introduction

Background

• Supporting users to guarantee a successful and efficient scene exploration (acquiring knowledge of respective, unknown scene)

• Aided wayfinding (e.g., visualization of proposed paths, virtual tours, ...) provide intentional input influencing wayfinding decisions

 \rightarrow Drawback: artificial and potentially intrusive visualizations embedded, pre-defined routes limiting users' free exploration

Research Objective

• Can we indirectly guide users utilizing social cues in form of virtual pedestrians, plausibly enlivening the scene, as an unaided wayfinding strategy?

Requirements

- Basic *enlivenment* of the entire scene
- Recognizable *pedestrian flows* indirectly guiding to close-by areas of interest (AoIs)
- Avoid perception of pedestrians "running away" from user

Guidance by Pedestrian Flows

Types of Visually Indistinguishable Pedestrians

- Enlivening entire scene, representing the background noise Base agents:
- Guiding agents: Walking to selected, unvisited Aols

Remain at AoI for a short time for inspection, before moving on to next AoI Flow density indicates importance of Aol

Fig. 1: Guiding agents in different formations.

• Socially compliant navigation in groups: base groups with 2-3 base agents; guiding groups with 2-5 guiding agents

Unsupervised, Video-Based, Online Study

Between-Subjects Design

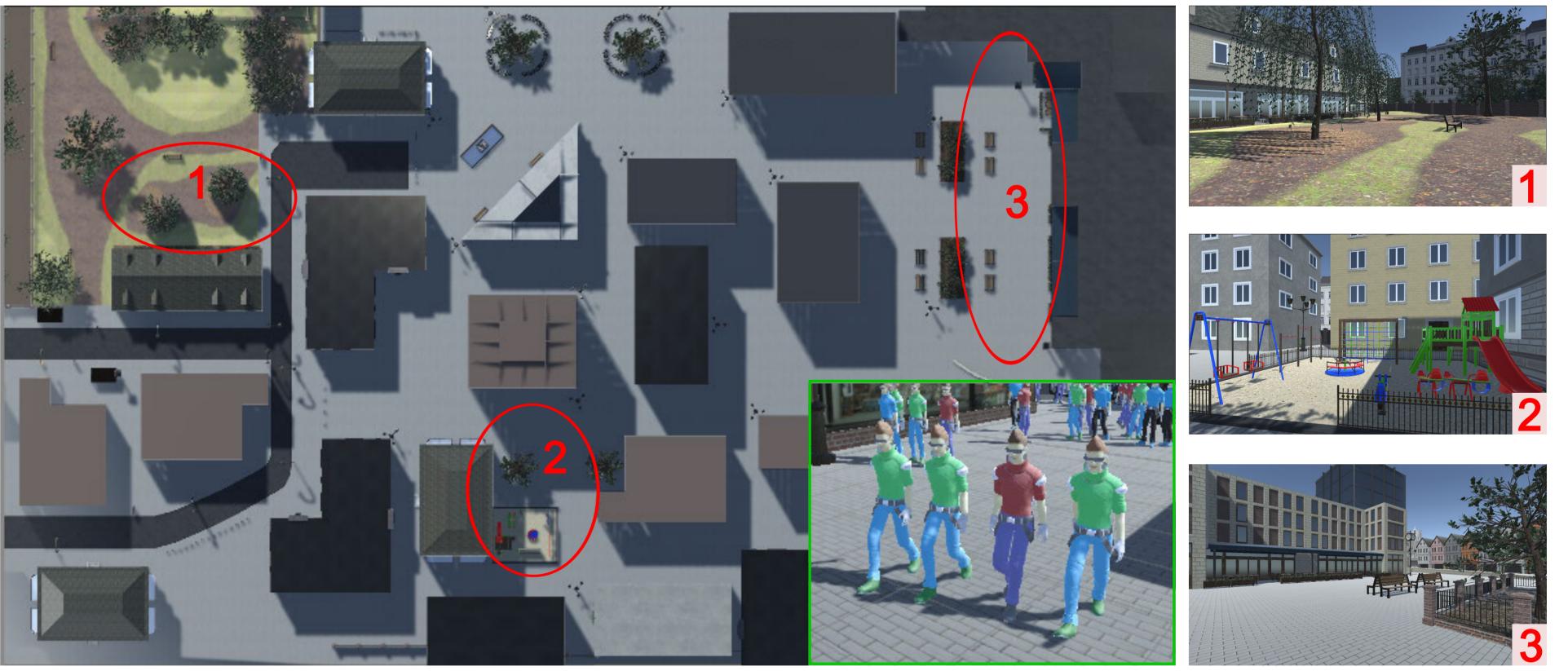
- C0: 50 base groups (control condition)
- C1: 15 base groups & 35 guiding groups w. uniform flow density ($\frac{1}{3}$ per Aol)
- C2: 15 base groups & 35 guiding groups w. varying flow density ($\frac{1}{2}$ for Aol2, $\frac{1}{4}$ for Aol1&3)

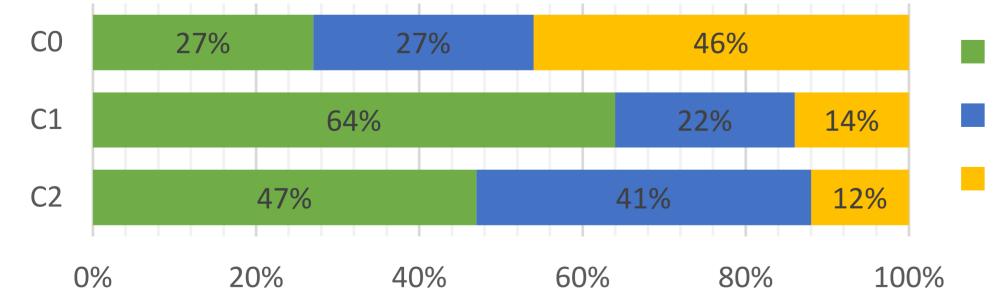
Participants

- 42 (22 females, 1 non-binary; age M=30.88, SD=14.1)
- Assigned to conditions based on birth month

Study Task

- Watch 1st person clip of traversing a street
- Decide at corner in which direction to proceed
- Next clip resuming simulation based on choice
- Repeated four times




Fig. 2: Study scene with three AoIs: a park (AoI1), a playground (AoI2), and a restaurant (AoI3).

Lessons Learned

- Pedestrians as social cues work for unaided wayfinding
- Flow density influences users' wayfinding decisions
- Impact of environment to be considered

Results

Wayfinding decisions influenced by pedestrians

■ I followed the pedestrians. I avoided the pedestrians. Pedestrians did not affect my decisions.

- Base agents also perceived as social cues (cp. C0)
- "Herd instinct": Flows/grouping indicated relevant spots
- Too dense flows/groupings raised discomfort, hesitation to meander through, assumption to be faster on emptier route as well as desire for more quiet, but not abandoned, places

\rightarrow e.g., brightness, width of streets, ...

Next Steps

- More research on impact of flow density
- Improve environment-aware navigation
 - Adapt density based on available walkable space
 - Make rows to enter small-scale Aols orderly

. . .

- Investigating the effect of the pedestrians' appearance
- VR-based evaluation

Visual Computing Institute

Virtual Reality & Immersive Visualization Prof. Dr. Torsten W. Kuhlen

