

Prosodic and Visual Naturalness of Dialogs Presented by Conversational Virtual Agents

Lukas Aspöck¹, Jonathan Ehret², Stefan Baumann³, Andrea Bönsch², Christine T. Röhr³, Martine Grice³, Torsten W. Kuhlen² and Janina Fels¹

Investigating the Naturalness of Virtual Agents

- Conversional virtual agents become more present in our daily life (e.g., on *smart* devices).
- Mostly text-to-speech synthesis (TTS) is used for speech production, which often differs substantially from natural speech [1].

Pilot Study: Online Experiment

- In a 3 x 2 within-subject study, participants had to watch and listen to four different dialogs (short, made-up telephone calls of around 30 s each).
- Dialogs were presented in three speech conditions: 1. S_{human}: Human speech with adequate prosody
- 2. *S*_{TTS}: Synthetic speech produced by an offthe-shelf TTS system

Speech Stimuli: Four Dialogs

Condition 1: Anechoic audio recordings of these dialogs were made with two trained speakers (AKG C451E/CK4 capsule at ~ 50 cm distance). Facial movement was captured using Apple's *True Depth* sensor of an *iPhone SE* and the *Live Link Face* App (face animation recordings @ 100 Hz).

- The effect of TTS in comparison to natural language as well as the role of the embodiment of embodied conversional agents (ECAs) needs to be studied [2].
- In an interdisciplinary team, we are aiming at revealing the impact of adequate and inadequate prosody on the perceived naturalness and aliveness of virtual agents [3].
- 3. $S_{human+TTS}$: Human speech with same inadequate prosody as S_{TTS}
- Two embodiment conditions:
- 1. E_{audio} : audio-only presentation
- 2. E_{ECA} : audio-visual presentation of an ECA (video)
- Study implemented on SoSciSurvey platform.
- Condition 2: TTS-generated dialogs using the Google Cloud TTS engine (female voice: *de-DE-Wavenet-F*; male voice: *de-DE-Wavenet-B*).
- Condition 3: Anechoic audio recordings of these dialogs including TTS prosody with two trained speakers (same setup as for condition 1, also including face movement tracking).

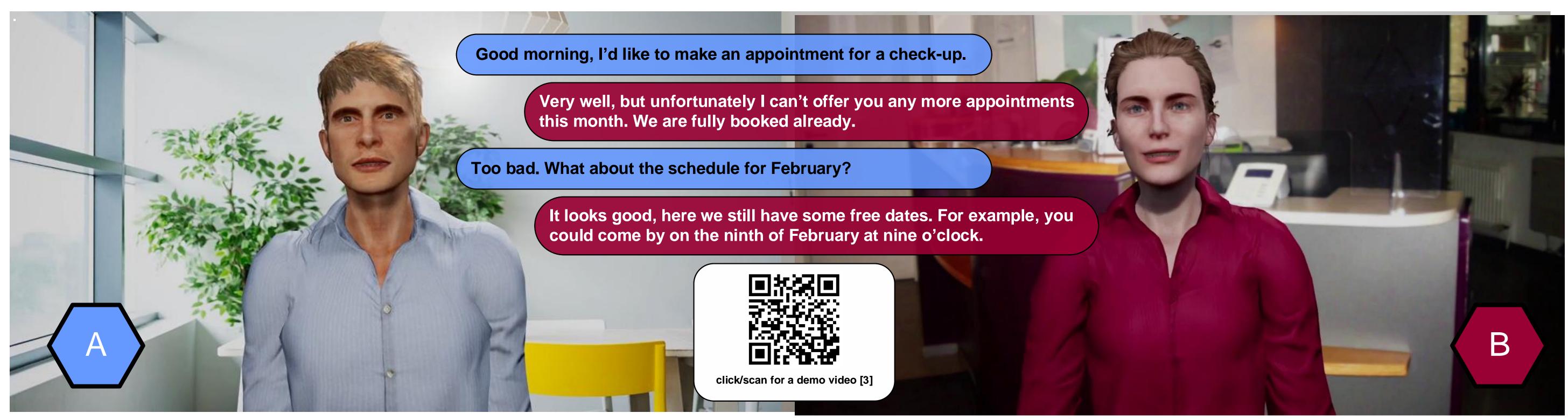


Fig. 1: Side-by-Side view and text example of the dialog situation including Speaker A and Speaker B (translated from German to English).

Virtual Acoustic Environment

- Binaural auralizations for all speech conditions were created using the *Virtual Acoustics* software (VA, http://www.virtualacoustics.org).
- The speaker was simulated as a virtual sound source at a distance of ~70cm.
- A static binaural artificial reverberation of a medium-sized room (V = 56 m³, T₃₀ ≈ 430 ms) was added using the *BinauralArtificialReverb* rendering module of VA.
- VA was connected to the Unreal Engine 4.22 in which human models (created with *Character Creator 3*) of the two speakers were rendered in front of a static background (Fig. 1).
- Captured facial expressions were mapped to the faces of the models

Experimental Procedure

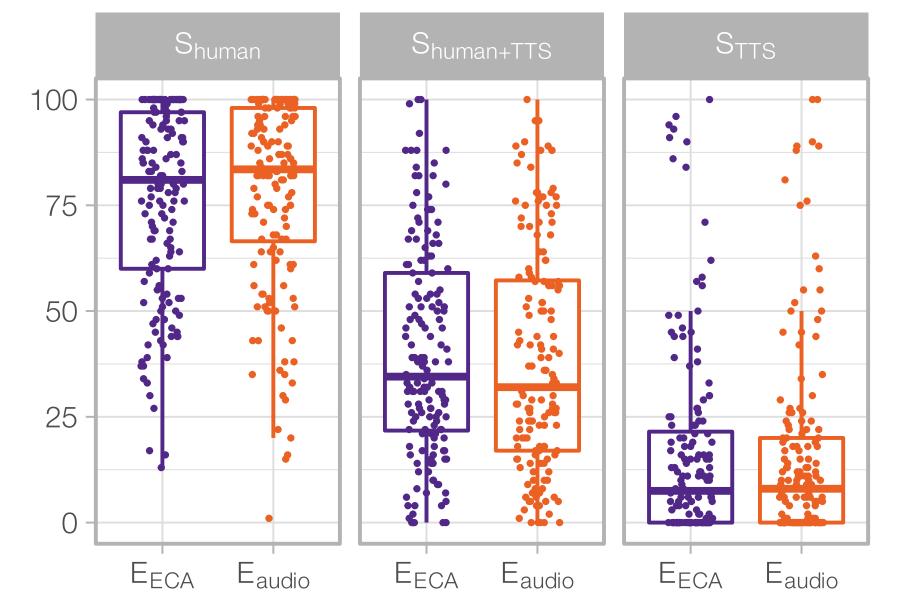
- Participants were asked to conduct the study in a quiet environment using headphones. A calibration procedure ensured that output levels of the audio stimuli were between 50 and 60 dB(A).
- The task was to rate the naturalness *N* of 24 stimuli, 12 (4 scenarios x 3 speech conditions) for *E*_{audio} and 12 for *E*_{audio}. Each stimulus could only played once.
 To rate naturalness, the question "How does the dialogue sound to you?" was answered (see below)

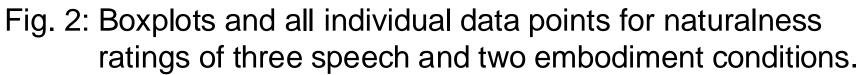
Hypotheses

H1 We expect participants to rate (i) a human voice as more natural than a synthetic voice (even if the prosody is inadequate) and to rate (ii) adequate prosody as more natural than inadequate prosody:

$N(S_{\text{human}}) > N (S_{\text{human+TTS}}) > N (S_{\text{TTS}})$

H2 We expect that watching the ECAs speaking will increase the perceived naturalness of the synt. speech:


 $N(E_{\text{ECA}}) > N (E_{\text{audio}})$ for S_{TTS}


Results and Discussion

In total 39 native speakers of German were evaluated.

- Results for naturalness ratings in Fig. 2.
- **H1** confirmed: S_{Human} is rated more natural than inadequate prosody and synthetic speech.
- Differences betw. speech were significant (p < .001).
- H2 not confirmed: No significant effects between embodiment conditions.
- Second part: Participants reliably chose adequate prosody as more natural and preferred the human voice, albeit not so clearly when comparing both conditions with inadequate prosody (Fig. 3).

Summary and Outlook

Wie klingt der Dialog für Sie?

unnatürlich

------ X natürlich

- Responses were mapped to a scale from 0 to 100.
- In a second part of the study, participants had to choose which of two audio stimuli sounded more natural to them.
- An experimental procedure to investigate speech of ECAs has been implemented.
- The pilot study shows that inadequate prosody has a strong effect on perceived naturalness of speech.
- The results indicate only a minor role of the visual representation of the ECA.
- Future experiments also in VR and using English language, as English TTS is further developed.

Fig. 3: Results of second part - percentage of audio samples rated more or equally natural when comparing speech conditions.

References

- [1] Cassell, J. et al., Embodied Conversational Agents. MIT Press. 2000.
- [2] Chérif, E. and Lemoine, J., Anthropomorphic Virtual Assistants and the Reactions of Internet Users: An Experiment on the Assistant's Voice.
 2019. https://doi.org/10.1177/2051570719829432
- [3] Ehret, J. et al., Do Prosody and Embodiment Influence the Perceived Naturalness of Conversational Agents' Speech? ACM Transactions of Applied Perception (*conditionally accept*). 2021.

Institute for Hearing Technology and Acoustics RWTH Aachen University Kopernikusstr. 5 52074 Aachen Ias@akustik.rwth-aachen.de

If Phonetics University of Cologne Herbert-Lewin-Str. 6 50931 Cologne stefan.baumann@uni-koeln.de

