23rd ACM International Conference on Intelligent Virtual Agents

Whom Do You Follow? Pedestrian Flows Constraining the User's Navigation During Scene Exploration

Andrea Bönsch, Lukas B. Zimmermann, Jonathan Ehret, Torsten W. Kuhlen Visual Computing Institute, RWTH Aachen University

Introduction

Background

- Scene exploration in large-scale immersive virtual environments (IVEs) is non-trivial and needs to be supported
- Support options
- \rightarrow *River* analogy as constrained navigation [Galyean1995] \rightarrow Users following virtual pedestrian *flows* [Bönsch2021] • Idea: Use flows as rivers by allowing users to leash themselves to a pedestrian and being dragged along

Research Objective

- Are constrained pedestrian flows effective for guiding users to areas of interest (AOIs)?
- How to visualize leashing to a virtual pedestrian?

Requirements

 Pedestrian flows connecting AOIs with varying walking speeds of virtual pedestrians

Leashing Cues

Fig. 1: Being dragged by a virtual pedestrian requires a leashing visualization highlighting this pedestrian to predict future motions.

VR-based User Study

18 Participants

• 12 males, 5 females, 1 undisclosed

• Age: M = 26.28, SD = 3.56

Part I: Evaluating Leashing Visualization

 Navigating in a flow and selecting different pedestrians of choice (POCs) via raycasting while testing all 5 leashing visualizations in a randomized order (1 min / cue)

Results Part I

- Preference ratings
 - \rightarrow Color was most, Size was least preferred cue
 - \rightarrow No clear preference for either element-cue
- Perceived identifiability
 - \rightarrow Color and Circles were preferred
 - \rightarrow Size: Insufficient while further enlargement may be too occluding or intimidating
 - \rightarrow *Triangle:* Assignment to pedestrian was ambiguous
 - \rightarrow Cap: Too hard to spot
- Impact on presence: \rightarrow Cap and Size were rated best

 Part II: Scene Exploration
 Extended

 • Exploring unknown IVE for 7 min to find all AOIs
 Contend

 • Exploring unknown IVE for 7 min to find all AOIs
 Contend

order

- \rightarrow with most liked element-cue
- \rightarrow without constrained navigation
- Free roaming at AOIs requires detaching and re-leashing

active option

- detachment via anchor agent
- re-leashing via active leashing to a POC

passive option

- detachment on being dragged over green line
- re-leashing to closest pedestrian when crossing white line

Results Part II

- Constrained navigation resulted in
 - \rightarrow Higher discomfort and cognitive load due to POC often being hidden within pedestrian flow
 - \rightarrow Lower task performance due to slower dragging speed
- Automatic detaching preferred for entering AOIs
- Manual re-leashing preferred for leaving AOIs

 \rightarrow *Circle* was rated worst

Lessons Learned Part I

- Color promising cue
- Circle and Cap need revision and improvement

Lessons Learned Part II

- "I could just rely on the pedestrians carrying me there." \rightarrow Pedestrian flows were liked
 - \rightarrow Constrained navigation in pedestrian flows requires overcoming shortcomings of current version such as speed and occlusion issues

Literature

Galyean et al., 1995 Guided Navigation of Virtual Environments. Symp. on Interactive 3D Environments, https://doi.org/10.1145/199404.199421

Bönsch et al., 2021

Indirect User Guidance by Pedestrians in Virtual Environments. ICAT-EGVE, https://doi.org/10.2312/egve.20211336

Visual Computing Institute

Virtual Reality & Immersive Visualization Prof. Dr. Torsten W. Kuhlen

