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Figure 1: Visualizations of (a) Minkowski, (b) Kerr, (c) Kastor-Traschen, (d) Morris-Thorne spacetimes created with Astray.

Abstract
Geodesic ray tracing is the numerical method to compute the motion of matter and radiation in spacetime. It enables visual-
ization of the geometry of spacetime and is an important tool to study the gravitational fields in the presence of astrophysical
phenomena such as black holes. Although the method is largely established, solving the geodesic equation remains a computa-
tionally demanding task. In this work, we present Astray; a high-performance geodesic ray tracing library capable of running
on a single or a cluster of computers equipped with compute or graphics processing units. The library is able to visualize any
spacetime given its metric tensor and contains optimized implementations of a wide range of spacetimes, including commonly
studied ones such as Schwarzschild and Kerr. The performance of the library is evaluated on standard consumer hardware
as well as a compute cluster through strong and weak scaling benchmarks. The results indicate that the system is capable of
reaching interactive frame rates with increasing use of high-performance computing resources. We further introduce a user
interface capable of remote rendering on a cluster for interactive visualization of spacetimes.

CCS Concepts
• Applied computing → Physics; • Computing methodologies → Ray tracing; Parallel algorithms; • Human-centered com-
puting → Scientific visualization;

1. Introduction

While classical ray tracing is concerned with creating photo-
realistic renderings of geometry and volumes by computing the
motion of light in space, geodesic ray tracing is the numerical
method for computing the motion of matter and radiation in space-
time, according to the laws of general relativity. It is a valuable tool
for studying the geometry of spacetime in the presence of astro-
physical phenomena such as black holes and gravitational waves.
It is also useful for validation of observational data, such as the
recent images of the M87* created by the Event Horizon Tele-
scope [AAA∗21], against theoretical models. Various geodesic ray
tracers have been published over the years. Yet these often focus on
specific metrics, utilize parallelization to a limited extent, or both.

In this paper, we propose several contributions offering a gen-
eral, parallel, and extendable architecture for geodesic ray tracing

to be used by domain scientists such as theoretical physicists. We
present two tools; Astray, a geodesic ray tracing library, and Astrid,
an exemplary end-user application based on Astray.

Astray is developed according to the following system design
principles:

• General, such that it supports geodesic ray tracing in any space-
time with a known metric tensor.

• Efficient, such that it utilizes the optimal parallelization
paradigms wherever applicable.

• Scalable, such that it is capable of running on hardware ranging
from standard workstations to large compute clusters.

• Extensible, such that it is capable of supporting new metrics with
ease and thus allowing fast hypothesis evaluation.

Astrid is an application suite that enables interactive visualiza-
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tion of spacetimes. It is built with Astray and consists of two com-
ponents:

• Astrid server: A geodesic ray tracing server that accepts integra-
tion and observation parameters from clients, renders an image
according to them, and sends an image back.

• Astrid client: A user interface to interact with and present the
images received from a server.

The client and the server are packaged into a single application
that can run in either of the two modes. The separation of rendering
from the user interface enables the ray tracer to run on a remote ma-
chine or cluster, bridging end-user hardware to high-performance
computing resources.

Emphasizing extensibility and ease-of-use, we aim to lower the
barrier of entry for domain scientists to incorporate geodesic ray
tracing into their workflow. Experts can focus on exploring the pa-
rameter space of existing metrics and implement their own metrics
with ease. Due to the parallelization and distribution of tasks being
abstracted by the library, the domain scientists are not required to
have background knowledge on these topics. The focus on perfor-
mance and scalability presents a first step toward interactive anal-
ysis of spacetime geometry: We aim to present not only a useful
addition to the toolset of domain experts but also a way for an eas-
ier creation of explorative software such as immersive visualization
environments or tools aimed toward teaching general relativity.

In the following sections, we explain how these goals are
achieved, evaluate our framework on various hardware and with
various metrics, measuring the performance with regard to the ca-
pability of providing interactive frame rates.

2. Background

This section is a brief summary of general relativity, focusing on
the concepts necessary for geodesic ray tracing. For an in-depth
review of the subject, we refer the reader to [Har03].

2.1. Spacetime

Spacetime is a 4-dimensional manifold consisting of 1 temporal
and 3 spatial components. It is a model of the universe. A point in
spacetime is called an event, and can be described by a coordinate
consisting of a 4-vector: [t x1 x2 x3]

T where t is the time coordinate
and xi are the components of a point located in a 3-dimensional
coordinate system such as the Cartesian, cylindrical or spherical
coordinates.

2.2. Line Element

In 3-dimensional Cartesian coordinates, the Pythagorean theorem
describes the squared distance between two points as:

ds2 = dx2 +dy2 +dz2 (1)

where ds is called the line element and [dx dy dz]T is the vector
of differences between the two points, in terms of each coordinate

axis. The line element concept is generalized in Riemannian ge-
ometry, removing the requirement of the coordinate axes to be or-
thonormal:

ds2 =
n

∑
i, j

gi j dxi dx j (2)

where n is the number of dimensions and gi j is a second rank, sym-
metric, positive definite tensor called the metric tensor. Notice that
Equation 1 is reconstructed when the metric tensor is set to the
identity I3.

2.3. Metric

In general relativity, the metric tensor appears in the Einstein field
equations:

Ri j −
1
2

Rgi j +Λgi j =
8πG
c4 Ti j (3)

where Ri j is the Ricci curvature tensor, R is the Ricci scalar, Ti j
is the energy-momentum tensor, and Λ, π, G, c are scalar con-
stants. Every solution to the Einstein field equations is character-
ized by a metric tensor gi j, enabling measurement of distances
in the spacetime described by it. Since spacetime is defined as a
pseudo-Riemannian, specifically a Lorentzian manifold, the metric
tensor is not required to be positive definite. This implies that ds2

in Equation 2 may be positive, zero, or negative, corresponding to
time-like, light-like, and space-like intervals respectively.

An important set of mathematical objects derived from the met-
ric tensor are the Christoffel symbols of the second kind Γ

i
jk. These

are computed symbolically from the derivative of the metric, and
describe the variation of the basis vectors due to a change in coor-
dinates. In a more formal sense, the Christoffel symbols are the co-
efficients of the Levi-Civita connection, the unique affine connec-
tion on the tangent bundle of the manifold described by the metric.
They establish the notions of differentiation and integration on the
manifold and hence are essential to the computation of geodesics.

2.4. Geodesic Equation

The motion of free falling particles in spacetime is described by the
geodesic equation:

n

∑
i

(
d2xi

dλ2 +
n

∑
j,k

Γ
i
jk

dx j

dλ

dxk
dλ

)
= 0 (4)

where λ is an affine parameter, specifically proper time τ in the case
of time-like geodesics. There are three types of geodesics corre-
sponding to the time-like, light-like, and space-like intervals, clas-
sified based on the sign of the (initial) direction. In the context of
ray tracing, time-like and light-like geodesics are of interest as they
describe the motion of objects with mass and photons respectively.
The geodesic equation is numerically solved by decomposing the
second-order differential equation into a pair of coupled first-order
equations, which are then iterated using a method such as fourth-
order Runge-Kutta.

In geodesic ray tracing, Equation 4 is iteratively solved for each
ray on the image plane of the observer with n = 4. The number of
rays depends on the size of the image plane, ranging from several
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thousand to millions of pixels. The number of iterations varies from
a few hundred for quick tests to several millions for high-quality
images. It is therefore essential for a high-performance ray tracer
to solve this equation as efficiently as possible. Furthermore, as the
equation depends on the Christoffel symbols of an arbitrary metric,
a geodesic ray tracer striving for generality should allow the user to
set the Christoffel symbols for distinct metrics in order to support
a wide range of spacetimes.

3. Related Works

Several geodesic ray tracers were proposed in the last decades. An
early implementation was presented in [Wei00], generalizing con-
cepts from standard ray tracing to relativistic settings. The perfor-
mance of this ray tracer was improved through the utilization of
graphics processing units (GPU) in [WSE04]. Various applications
based on the ray tracer were presented in [WBE∗06], yet real-time
geodesic ray tracing was referred to as challenging if not impossi-
ble using hardware available at the time. Questioning whether this
statement still holds, we revisit the problem with a distributed ap-
proach on modern hardware.

Another geodesic ray tracing library supporting a variety of met-
rics called Motion4D was introduced in [MG09b]. Several perfor-
mance improvements to this library were described in [KMA∗12]
and [MBW15], along with a user interface called GeoViS presented
in [Mü14]. Motion4D and the catalogue of spacetimes [MG09a] ac-
companying the library contain the numerical descriptions of most
known spacetimes to date, and have enabled us to implement a wide
range of metrics, such as the ones seen in Figure 1. Although Mo-
tion4D provides GPU support, and GeoViS uses the Message Pass-
ing Interface (MPI) [MPI21] for threading, their distributed com-
puting capabilities are limited.

The more recent approaches presented in [CPO13], [PYYY16],
[CMOP18] and [VE21] are also capable of running on GPUs, but
they provide no distributed computing support and are specialized
for the Kerr spacetime. The ray tracers presented in [VPGP11],
[VCAVL∗22], [PRCB22], and [Whi22] are more general, yet are
limited to compute processing units (CPU) on a single computer.
The approach presented in [PMNJ18] offers no parallelization at
all.

Based on the literature review, we conclude that while various
geodesic ray tracers exist that either focus on performance or gen-
erality, there are few capable of both. Furthermore, the majority of
the geodesic ray tracers to date do not provide distributed comput-
ing support, implying limited scalability. In contrast to the existing
solutions, Astray simultaneously targets performance, scalability,
and generality. It is a flexible system capable of scaling from a sin-
gle computer to a cluster of compute or graphics processors, using
identical code. It is further capable of working with any spacetime
with a known metric tensor and includes optimized implementa-
tions of common spacetimes. We demonstrate the features of the
system in Section 4, and assess its performance on a mobile work-
station as well as a compute cluster in Section 5.

1 #include <astray/api.hpp>
2 int main(int argc, char** argv)
3 {
4 using scalar_type = double;
5 using metric_type = ast::metrics::schwarzschild<scalar_type>;
6 using geodesic_type =
7 ast::geodesic<scalar_type,ast::runge_kutta_4<scalar_type>>;
8
9 ast::ray_tracer<metric_type, geodesic_type> ray_tracer;

10 ray_tracer.set_image_size ({1920,1080});
11 ray_tracer.set_lambda_step_size(0.01);
12 ray_tracer.set_iterations (1000);
13
14 auto& transform = ray_tracer.get_observer().get_transform();
15 transform.translation = {0.0, 0.0, -10.0};
16 transform.look_at ({0.0, 0.0, 0.0});
17
18 const auto image = ray_tracer.render_frame();
19 image.save("example.png")
20 }

Listing 1: A simple example for rendering the Schwarzschild met-
ric using Astray, which describes a static uncharged black hole.

4. Implementation

The ray tracer class, seen in the example presented in Listing 1, is
the outermost abstraction exposed to the users. It is parametrized
by the type of the metric tensor and the geodesic, the latter being
additionally parametrized by the method of integration. It allows
adjustment of integration parameters, including the number of iter-
ations and λ step size, and furthermore provides mutable access to
the observer. It is responsible for rendering the frame, which can
then be saved to a file as seen in the example, or streamed to a
client.

As summarized in Section 2, geodesic ray tracing involves solv-
ing the geodesic equation in an iterative manner. The equation in
turn depends on the Christoffel symbols of the metric it is being
solved for. Following the theory closely, two central abstractions in
Astray are the geodesic and the metric. The geodesic class encap-
sulates the functionality to iterate a single particle in a metric. The
kernel evaluating the geodesic equation is seen in Listing 2.

Although a single iteration may be fast, the geodesic kernel is
called multiple times for every iteration of each ray. For example,
the kernel is evaluated 4 times for a single iteration of a fourth-order
Runge-Kutta method on a single ray. It, therefore, becomes compu-
tationally expensive quickly and has to be implemented efficiently
as it is potentially the main bottleneck of geodesic ray tracing.

The library is equipped with an ordinary differential equation

1 [&metric] __device__ (const scalar_type t, const value_type& y)
2 {
3 value_type dydt;
4 dydt.head(4) = y.tail(4);
5 auto christoffel_symbols =
6 metric.christoffel_symbols(y.head(4));
7 for (auto i = 0; i < 4; ++i)
8 for (auto j = 0; j < 4; ++j)
9 for (auto k = 0; k < 4; ++k)

10 dydt .tail(4)[k] -= christoffel_symbols(i, j, k)
11 * y.tail(4)[i]
12 * y.tail(4)[j];
13 return dydt;
14 }

Listing 2: The kernel solving the geodesic equation. The
value_type is an 8 component vector, describing the position and
the direction of the ray.
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1 template <
2 coordinate_system_type system,
3 typename scalar_type,
4 typename vector_type,
5 typename christoffel_symbols_type>
6 class metric
7 {
8 virtual christoffel_symbols_type christoffel_symbols
9 (const vector_type& position) = 0;

10
11 virtual termination_reason check_termination
12 (const vector_type& position, const vector_type& direction)
13 {
14 return termination_reason::none;
15 }
16 virtual scalar_type coordinate_system_parameter()
17 {
18 return scalar_type(0);
19 }
20 };

Listing 3: The metric interface to be implemented for each space-
time. Note that the last two functions provide default implementa-
tions and are hence optional.

solver that is utilized to iterate the geodesic equation. The solver
implements both fixed and adaptive step size methods including
Runge-Kutta 4, Fehlberg 5, and Dormand Prince 5. Several stan-
dard error controllers for adaptive step size methods are also im-
plemented, specifically the integral, proportional integral (PI), and
proportional integral derivative (PID) controllers. The solver is
further capable of decomposing nth-order initial value problems
into n coupled initial value problems. Although many differential
equation solvers such as Boost.Odeint [AM11] and LLNL Sundi-
als [HBG∗05] have been presented in the past, to our knowledge,
our solver is the only one capable of being instantiated in device
code, which provides additional flexibility.

The library currently supports 18 spacetimes. Multiple black
hole metrics, including Schwarzschild (static uncharged), Kerr (ro-
tating uncharged), Reissner-Nordström (static charged) are imple-
mented. Regarding gravitational wave metrics, Weber-Wheeler-
Bonnor pulse, as well as Bessel waves, are supported. Several
more exotic spacetimes, such as the Alcubierre warp drive and the
Morris-Thorne wormhole are also available. For a complete list, we
refer the reader to the source code.

Additionally, if the requested spacetime is not already available
in Astray, the users can define it themselves by inheriting the met-
ric class seen in Listing 3. The users are required to provide the
Christoffel symbols of the metric as a function of position, op-
tionally along with a termination condition which can be used
to check for constraint violations, numeric errors, and spacetime
breakdowns. Afterward, the new metric can be provided as a pa-
rameter to the ray tracer class and used for geodesic ray tracing.
No further knowledge of the inner workings of Astray is required,
which makes it easy to use for domain scientists.

The observer abstraction is the analog of a camera in standard
ray tracing. It consists of a transform and a projection and is re-
sponsible for generating rays from this information. Ray generation
is performed separately from tracing, which is common practice in
standard ray tracers today. This allows the implementation of alter-
native projections with ease, as well as the use of non-rectangular
image planes and even arbitrary functions for generating rays.

Geodesic ray tracing requires a capable linear algebra solver, as

most equations involve vectors and tensors. To this extent we use
Eigen [GJ∗10] as it is highly optimized, implements tensors, and
provides GPU support. Throughout the development of Astray, we
have made several minor contributions to Eigen; correcting the con-
struction of fixed-size tensors and enabling more matrix operations
on the GPU.

Shared memory parallelization is built on Thrust [BH12], which
provides a common interface for OpenMP, Intel TBB, and Nvidia
Cuda. This allows the library to target CPUs and GPUs with iden-
tical code. However, it also requires splitting the library into host
and device code, an abstraction originating in Cuda. The host code
is responsible for driving the application from the CPU, whereas
the device code is used for the kernels that are run in parallel on
either the CPU or the GPU. The majority of Astray is device code,
notable exceptions being the observer and the ray tracer which drive
ray generation and tracing respectively.

Distributed memory capabilities are achieved with MPI
[MPI21]. A data-parallel approach is used, in which the frame-
buffer is partitioned into equal-sized tiles and distributed to the pro-
cesses. The size of the tiles is computed from the prime factors of
the process count, which are assigned to the two dimensions of the
image in a manner that minimizes the aspect ratio of the tiles. As
the processors on a device are saturated by Thrust, applications are
intended to run with one process per node. Currently, rendering a
frame is implemented as a blocking operation as the finished tiles
are collected to the root process using MPI_Gather, although there
are no architectural limitations that would prevent non-blocking
communication for asynchronous computation of multiple frames.

5. Experiments

This section describes the experiments conducted on the system to
assess its runtime performance and scaling behavior. Emphasizing
performance-portability, the experiments target standard consumer
hardware as well as compute clusters. An important question to be
answered by the measurements is whether and to what extent real-
time geodesic ray tracing is possible on modern hardware.

The following parameters are constant for all benchmarks: The
integration scheme is set to Runge-Kutta 4. The number of itera-
tions is set to 1000. The λ is set to 0.0 with a step size of 0.01.
The bounds are not set. The observer is located at [0 5 0 0]T and
is oriented toward the origin. The projection is set to perspective,
with a field-of-view of 120 degrees, a focal length of 1, and a clip-
ping range of [0.01, 100). For the Schwarzschild, Kerr, and Kastor-
Traschen metrics, all masses are set to 1. For the Kerr metric, the
angular momentum is set to 1. For the Kastor-Traschen metric, the
two singularities are located at [0 0 0 −1]T and [0 0 0 1]T respec-
tively.

Measurements are taken for each of the four metrics: Minkowski,
Schwarzschild, Kerr, Kastor-Traschen, and for each backend: se-
rial, Cuda, OpenMP and TBB. Each measurement is repeated 10
times and the results are averaged.

5.1. Workstation

We measure the performance behavior of the system on standard
consumer hardware. The output image size is varied as 240×135,
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Figure 2: Workstation benchmarks. Horizontal axes correspond to image size, vertical axes correspond to time in milliseconds needed
to render a single frame. Colors correspond to the device system: Black, green, red and blue represent serial, CUDA, OpenMP and TBB
respectively. Each plot corresponds to a metric. From left to right: Minkowski, Schwarzschild, Kerr, Kastor-Traschen.

320×180, 480×270, 960×540, 1920×1080 while the processing
power and all other parameters are kept constant. This allows to
observe the time it takes to render a 1080p image with decent detail
and to see if a configuration supporting interactive frame rates is
possible on a single device.

5.2. Cluster

We measure the strong and weak scaling of the system on a com-
pute cluster. For strong scaling, the number of processes is varied
as 1, 2, 4, 8, 16 and the image size is fixed to 10242. Thus, it pro-
vides insight into the system’s response to an increase in process-
ing power as it is performing a constant amount of work and to
find a configuration with a duration suitable for interactive visual-
ization. For weak scaling, the number of processes is varied as 1,
2, 4, 8 and 16 simultaneously with the image size, which is varied
as 5122, 7242, 10242, 14482, 20482. Showing to what extent the
system provides a constant response to an equivalent increase in
processing power and work.

6. Results & Discussion

The workstation benchmarks are run on an MSI GE75-8SF lap-
top equipped with an Intel Core i7-8750H processor, an Nvidia
GeForce RTX 2080 graphics processor, and 64GB of DDR4 mem-
ory. The results are presented in Figure 2.

The following table displays the minimum and the maximum
speedup relative to the serial approach across all workstation mea-
surements:

Speedup (Workstation)

OpenMP 4.63 - 5.66
TBB 4.67 - 5.73
Cuda 33.08 - 50.77

The CPU backends show almost identical performance, with
TBB slightly outperforming (<0.16%) OpenMP in 19 out of 20
cases, the only exception being the Minkowski metric at 1080p.

Cuda provides the best performance, yet still requires several min-
utes to generate 1080p images with 1000 iterations per pixel, im-
plying that real-time geodesic ray tracing with sufficient detail is
out of reach, at least on a single device.

Interestingly, the Minkowski metric appears to benefit less from
parallelization, being limited to a speedup of 4.67 on the CPU
and 37.49 on the GPU. This is counter-intuitive at first since its
geodesics are predictable straight lines. Yet the system does not ap-
ply such predictions for generality and iterates regularly with all
Christoffel symbols set to zero. Essentially, the Minkowski met-
ric measures the raw integration time, omitting any overhead intro-
duced by the computation of the Christoffel symbols.

The strong and weak scaling benchmarks were run on the Aix-
CAVE partition of the RWTH Aachen compute cluster. Each node
is equipped with 2 Intel Xeon Silver 4114 processors, 2 Nvidia
Quadro P6000 graphics processors, and 192GB of DDR4 memory.
The benchmarks are conducted using 1 to 16 processors in an in-
teractive session. The results are presented in Figure 3. The serial
measurements are omitted from the plots as they interfere with the
scale.

The following table displays the minimum and the maximum
speedup relative to the serial approach across all strong scaling
measurements on the cluster:

Speedup (Cluster)

OpenMP 23.97 - 31.19
TBB 24.79 - 31.21
Cuda 27.3 - 36.18

The strong scaling measurements display similar behavior for all
three backends. TBB performs consistently better than OpenMP in
the cluster, with the difference reaching 8.31% in the single pro-
cess case of the Kerr metric. Cuda still provides the best perfor-
mance, yet the distinction between the CPU and the GPU backends
is less emphasized in comparison to the workstation benchmarks.
This might be attributed to the relative capabilities of the hardware
installed on the cluster. Aside from scaling, the results indicate that
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Figure 3: Strong (top) and weak (bottom) scaling benchmarks. Horizontal axes correspond to processor count (and image size for weak
scaling), vertical axes correspond to time in milliseconds needed to render a single frame. Colors correspond to the device system: Green,
red, blue represent CUDA, OpenMP, TBB respectively. Each plot corresponds to a metric. From left to right: Minkowski, Schwarzschild,
Kerr, Kastor-Traschen.

near-interactive visualization is possible, as sub-second computa-
tion times are reached with 16 processes.

The weak scaling measurements show variations reaching up to
500 milliseconds. This is expected to an extent, as the benchmarks
were run interactively rather than in batch mode, implying that the
processors were not reserved for the application. The duration of
ray tracing also appears to increase with additional processes, de-
spite work per process being kept constant. The amount of increase
is similar for the CPU and the GPU backends, indicating a common
serial operation such as gathering the output image to the root pro-
cess as a potential reason. Further investigation remains as future
work.

7. User Interface

In addition to the library, an end-user tool was developed with the
intent of making geodesic ray tracing accessible to users without
programming experience: Astrid is a ray tracing server and user
interface built upon Astray, enabling interactive visualization of
a wide range of spacetimes. The interface, seen in Figure 4, al-
lows the users to adjust the metric, the observer, and the integra-
tion parameters, and immediately render a result. The position and
the orientation of the observer may also be updated using standard
first-person controls with movement keys and mouse rotation. The
users can further toggle looped rendering, in which the parame-
ter changes are transmitted continuously to the server, enabling in-

teractive exploration of metrics. Given sufficient hardware on the
server-side, the users can then browse the metric in real-time.

Astrid is capable of rendering images on the local device the
user interface is running on, as well as a remote device or cluster.
This is achieved using an approach similar to ParaView [AGL05],
by abstracting the rendering functionality into a server application
that is distinct from the user interface. The user interface is a thin
client responsible for forwarding the parameters from the user to
the server via requests. The server listens for requests and replies
to them with a rendered image to be displayed by the user interface.

The client and the server communicate via the ZeroMQ [Hin13]
networking library, using exclusive pair sockets which provide one-
to-one bidirectional communication. The parameters and the output
images are serialized using Protobuf [Goo08]. A reason for utiliz-
ing these two libraries is their support for a wide variety of pro-
gramming languages and runtime environments. Although both the
client and the server are regular desktop applications, these allow
the development of alternative clients compatible with the server,
such as web and mobile apps. This in turn makes it possible to ac-
cess geodesic ray tracing from devices were local rendering would
not be feasible.

The user interface is capable of launching a server as a sub-
process and connecting to it automatically for local rendering. In
a distributed setting, the user interface makes the requests to the
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Figure 4: An overview of Astrid’s user interface. The viewport displays a Schwarzschild black hole with the Tycho skymap [NAS09] in the
background.

root node which responds with the gathered image. For more detail
and a tutorial on Astrid, we refer the reader to its documentation.

8. Conclusion & Future Work

We have presented a high-performance geodesic ray tracing sys-
tem capable of scaling from single computers to compute clus-
ters. Based on the performance study conducted on the system,
we have shown that it is capable of near-interactive geodesic
ray tracing on a Tier-3 cluster. An accompanying user in-
terface capable of remote rendering was also presented, with
the intent of reaching users without programming experience.
Astray and Astrid are open-source software distributed under
the BSD 3-Clause license, accessible at https://github.
com/vrgrouprwth/astray and https://github.com/
vrgrouprwth/astrid respectively.

In the future, more sophisticated load balancing and space parti-
tioning methods could be adapted from standard ray tracing to ac-
celerate the computation. We further consider regularly sampling
the Christoffel symbols into a 4D data structure in a precompu-
tation step and probing this structure at run-time in order to im-
prove performance. Another direction is spectral rendering, which
is necessary for the correct simulation of several effects such as
the Doppler red/blue shift. Aside from technical improvements, we
intend to reach out to the astrophysics community to promote the
library for research and education.
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