
ar
X

iv
:2

30
6.

11
84

0v
1 

 [
cs

.D
C

] 
 2

0 
Ju

n 
20

23

A C++20 Interface for MPI 4.0

Ali Can Demiralp

Visual Computing Institute

RWTH Aachen University

Aachen, Germany

demiralp@vis.rwth-aachen.de

Philipp Martin

IT Center

RWTH Aachen University

Aachen, Germany

pm.martin@itc.rwth-aachen.de

Niko Sakic

IT Center

RWTH Aachen University

Aachen, Germany

sakic@itc.rwth-aachen.de

Marcel Krüger

Visual Computing Institute

RWTH Aachen University

Aachen, Germany

krueger@vis.rwth-aachen.de

Tim Gerrits

Visual Computing Institute

RWTH Aachen University

Aachen, Germany

gerrits@vis.rwth-aachen.de

Abstract—We present a modern C++20 interface for MPI
4.0. The interface utilizes recent language features to ease
development of MPI applications. An aggregate reflection sys-
tem enables generation of MPI data types from user-defined
classes automatically. Immediate and persistent operations are
mapped to futures, which can be chained to describe sequential
asynchronous operations and task graphs in a concise way. This
work introduces the prominent features of the interface with
examples. We further measure its performance overhead with
respect to the raw C interface.

Index Terms—Message Passing, Software Libraries, Applica-
tion Programming Interfaces

I. INTRODUCTION

The message passing interface (MPI) is the standard pro-

gramming model for distributed computing today, yet it lacks

an official C++ interface since version 3.0. Applications writ-

ten in C++ have to rely on the C interface, which provides

no encapsulation, requires manual memory and scope man-

agement, and prevents use of C++ idioms and features. As

detailed by Rüfenacht et al. [1], many unofficial C++ interfaces

such as Boost.MPI [2] and MPL [3], [4] exist. However these

often target earlier versions of MPI (< 4.0), cover a subset of

their respective specification, and tend to limit their usage of

language features, serving mostly as RAII wrappers. Although

the MPI forum is actively discussing the potential features of a

new C++ interface [5], it is currently far from standardization.

This work presents a modern C++20 interface for MPI 4.0,

covering the complete specification. The interface provides au-

tomatic lifetime management for each MPI object, meaningful

defaults for each MPI function, compile-time generation of

MPI data types from structures and classes, and the ability to

express MPI requests as futures with continuations to describe

sequential non-blocking communication. We implement the

majority of the features requested by the users in [5], envi-

sioning what an official C++ interface could look like today.

II. IMPLEMENTATION

The interface is implemented as a header-only library de-

pending on the C interface. It consists of three major compo-

nents; the core, IO and tool interfaces. The core component

implements the chapters 1-13 of the standard [6], containing

all point-to-point, collective and one-sided communication.

The IO component implements chapter 14, the MPI-IO in-

terface, covering the functions with the prefix MPI File . The

tool component implements chapter 15, the profiling and tool

information interface of MPI, containing the functions with

the prefix MPI T .

The interface closely follows the C++ core guidelines

[7], which encourage idiomatic use of the language and the

standard library. The classes have two types of constructors;

managed and unmanaged. Managed constructors instantiate a

new MPI object and assume responsibility for its destruction.

Unmanaged constructors accept an existing MPI object and

do not assume responsibility for its destruction by default.

Copy constructors are deleted unless MPI provides duplication

functions (ending with dup) for the object, whereas move

constructors are available whenever possible.

All function pointers are converted to std::functions, which

enables user data to be passed through captures rather than

void pointer arguments. The library further contains scoped

versions of each enumeration. Functions expecting enumera-

tions as arguments use these scoped versions, which prevent

passing erroneous values and provide code completion sup-

port. The arguments of functions that accept a variety of MPI

objects are described with a std::variant, providing constrained

type erasure. Optional arguments and indeterminate return

values, such as the result of an immediate probe, are described

using std::optional.

The library provides default arguments for most MPI func-

tions, according to the standard where applicable. In several

cases, the defaulted arguments are required to be moved at the

end of the argument list. Furthermore, functions with a large

number arguments accept description objects encapsulating the

arguments instead.

User-defined classes must be registered as MPI data types

prior to being used in communication. Our interface is capable

of generating MPI data types for custom classes automatically,

http://arxiv.org/abs/2306.11840v1


struct custom_type
{

std::uint64_t id ;
std::array<float, 3> position;

}

custom_type custom;
if (communicator.rank() == 0)
{

custom = custom_type {42, {1.0f, 2.0f, 3.0f}};
communicator.send (custom, 1);

}
if (communicator.rank() == 1)
{

communicator.receive(custom, 0);
// custom == custom_type {42, {1.0f, 2.0f, 3.0f}};

}

Listing 1. User-defined types can be used in communication without explicitly
creating an MPI data type.

as seen in Listing 1. This functionality is based on PFR

[8], which enables compile-time introspection of aggregate

classes. Arithmetic types, enumerations and specializations

of std::complex fulfill the mpi::compliant concept and are

mapped to their MPI equivalents explicitly. Furthermore, C-

style arrays, std::arrays, std::pairs, std::tuples and aggregate

types consisting of compliant types are also compliant types

themselves. The communication functions can be used with

a single or a contiguous sequential container (i.e. std::string,

std::span, std::valarray, std::vector) of compliant types.

The requests returned by the interface are castable into

futures, which can be chained to express asynchronous se-

quential operations as seen in Listing 2. This feature serves as

a bridge between the concurrency support library of the C++

standard and the non-blocking communication functionality of

MPI. It further enables task graphs where forks are expressed

as multiple futures started from the current context, and

joins are expressed with mpi::when all or mpi::when any

which forward the underlying requests to MPI WaitAll or

MPI WaitAny respectively.

Error handling is performed by checking the return values of

viable MPI functions for success, throwing an exception oth-

erwise. It is optionally enabled at compile-time by defining a

macro prior to inclusion of the library headers. The exceptions

provide an error code, which derives from the error class as

specified by the standard. Default error codes are available as

variables scoped in the mpi::error namespace.

std::int32_t data = 0;
if (communicator.rank() == 0)

data = 1;

auto status =
mpi::future(communicator.immediate_broadcast(data, 0))
.then([&] (mpi::future f)
{

auto status = f.get();
if (communicator.rank() == 1)
data++;

return communicator.immediate_broadcast(data, 1);
})
.then([&] (mpi::future f)
{

auto status = f.get();
if (communicator.rank() == 2)
data++;

return communicator.immediate_broadcast(data, 2);
})
.get(); // data == 3 in all ranks.

Listing 2. The requests returned from non-blocking calls can be cast into
futures, which can be chained using .then() to express asynchronous sequential
operations.

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

Message length [byte]

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

R
u

n
ti

m
e

[µ
s]

C Interface 1 Node

C Interface 2 Nodes

C Interface 4 Nodes

C Interface 8 Nodes

C Interface 16 Nodes

C++ Wrapper 1 Node

C++ Wrapper 2 Nodes

C++ Wrapper 4 Nodes

C++ Wrapper 8 Nodes

C++ Wrapper 16 Nodes

Fig. 1. The benchmark results. The runtime performance of the C and the
C++20 interfaces for varying node counts and message lengths.

III. PERFORMANCE

We measure the performance of the library and compare it to

equivalent functionality implemented with the raw C interface.

We utilize mpiBench [9], which measures the runtime of 11

MPI operations for varying message lengths. The benchmarks

have been adapted to use our interface.

The experiments are controlled by three variables: The

interface varies as C (using the original mpiBench) or C++20

(using the adapted version). The message length varies as 2n

where 0 < n < 18. The node count varies as 1, 2, 4, 8, 16.

Measurements are taken for each combination of the three

variables. Each measurement is repeated 10 times and aver-

aged.

The experiments are ran on the RWTH Aachen CLAIX-

2018 compute cluster. Each node is equipped with 2 Intel

Xeon Platinum 8160 Skylake processors with 24 cores at 2.1

GHz. The network is provided by a high-speed RDMA Omni-

Path interconnect. The nodes are exclusively reserved for the

benchmarks to eliminate effects due to resource consumption

of other processes.

The results are shown in Figure 1. Each data point represents

the geometric mean over the 11 MPI operations. The slight

variances in runtime could be attributed to network traffic

which applies even in exclusive mode. The results of the

two implementations do not show recognizable patterns that

indicate a disparity in performance.

IV. CONCLUSION

We have presented a modern C++ interface for MPI and

demonstrated that its performance overhead is negligible in

comparison to the raw C interface. We continue to incorporate

the additions and changes that are proposed as part of the

4.1 and 5.0 specifications as they are becoming available.

For further detail, we refer the reader to the source code,

distributed under the BSD 3-Clause license, accessible at

https://github.com/vrgrouprwth/mpi.

https://github.com/vrgrouprwth/mpi


REFERENCES

[1] M. Rüfenacht, D. Schafer, A. Skjellum, and P. V. Bangalore, “MPIs
Language Bindings are Holding MPI Back,” ArXiv, vol. abs/2107.10566,
2021. [Online]. Available: https://arxiv.org/pdf/2107.10566.pdf

[2] D. Gregor and M. Troyer, “Boost MPI,” 2005. [Online]. Available:
https://www.boost.org/doc/libs/master/doc/html/mpi.html

[3] H. Bauke, “MPL - A message passing library,” 2015. [Online]. Available:
https://github.com/rabauke/mpl

[4] S. Ghosh, C. Alsobrooks, M. Rüfenacht, A. Skjellum, P. V. Bangalore,
and A. Lumsdaine, “Towards Modern C++ Language Support for MPI,”
in 2021 Workshop on Exascale MPI (ExaMPI), 2021, pp. 27–35.
[Online]. Available: https://ieeexplore.ieee.org/document/9652833

[5] MPI Forum, “MPI Issues Repository - #288: What features do
users need from an MPI C++ interface?” 2020. [Online]. Available:
https://github.com/mpi-forum/mpi-issues/issues/288

[6] ——, “MPI: A Message-Passing Interface Stan-
dard Version 4.0,” Jun. 2021. [Online]. Available:
https://mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

[7] The Standard C++ Foundation, “C++ Core Guidelines,” 2015. [Online].
Available: https://github.com/isocpp/CppCoreGuidelines

[8] A. Polukhin, “Boost PFR,” 2016. [Online]. Available:
https://www.boost.org/doc/libs/master/doc/html/boost pfr.html

[9] A. Moody and H. Subramoni, “mpiBench,” 2019. [Online]. Available:
https://github.com/LLNL/mpiBench

https://arxiv.org/pdf/2107.10566.pdf
https://www.boost.org/doc/libs/master/doc/html/mpi.html
https://github.com/rabauke/mpl
https://ieeexplore.ieee.org/document/9652833
https://github.com/mpi-forum/mpi-issues/issues/288
https://mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://github.com/isocpp/CppCoreGuidelines
https://www.boost.org/doc/libs/master/doc/html/boost_pfr.html
https://github.com/LLNL/mpiBench

	Introduction
	Implementation
	Performance
	Conclusion
	References

