NHR for
Computational

Engineering
< E S Science

A C++20 Interface for MPI1 4.0

A.C. Demiralp, P. Martin, N. Sakic, M. Kruger, T. Gerrits

RWTH Aachen University, Germany

Introduction

The message passing interface (MPI) is the standard programming mo-
del for distributed computing today, yet it lacks an official C++ interface
since version 3.0. Applications written in C++ have to rely on the C in-
terface, which provides no encapsulation, requires manual memory and
scope management, and prevents use of C++ idioms and features.

This work presents a modern and idiomatic header-only

C++20 interface for MPI1 4.0

covering the complete specification.

The interface provides
- automatic lifetime management for each MPI object
- meaningful defaults for each MPI function
- compile-time generation of MPI data types from structures
and classes
- the ability to express MPI requests as futures with

continuations to describe sequential non-blocking communication

Automatic Lifetime Management

- Managed contructors take the ownership of MPI objects after
iInstantiation

- Unmanaged constructors take in existing MPI objects and don not
take ownership by default

- Copy constructor when duplication functions are provided by MPI

- Move constructor whenever possible

environment;
const auto& communicator = - ;
. tvector< > data_container(3);
if (communicator.rank() == 0) {
data_container = {1, 2, 3};
communicator.send(data_container, 1);
+
if (communicator.rank() == 1)
communicator.receive(data_container, O);

Code example of MPI setup and sending/receiving a std::vector

Usage of Modern C++ Features

- std::function for callbacks additionally enables the usage of lambdas
with caputres

- std::variant for arguments that take a variety of MPI objects

- std::optional for optional parameters and indeterminate results

- strongly typed enums based on MPI| enums for additional type safety

C++ Interface

Reflection and Concepts

- Automatic MPI data types for PODs through non-boost PFR [2]

- mpi::compliant concept indicate MP| mappable types (Arithmetic
types, enumerations, std::complex specializations and C-Arrays,
std::arrays, std::pairs, std::tuple and aggregrate types of compliant

types)
- Sequential contigous containers can be used for sending multiple
values (i.e., std::string, std::span, std::valarray, std::vector)

auto status =
x (communicator.immediate_broadcast(data, 0))
.then([&] (s f) {
auto status = f.get();
if (communicator.rank() == 1)
data++;
return communicator.immediate_broadcast(data, 1);
}) .then([&] (s f) {
auto status = f.get();
if (communicator.rank() == 2)
data++;
return communicator.immediate_broadcast(data, 2);

}).get(); // data == 3 in all ranks.

C++ Interface

Seamless integration of MPI for use with modern C++ features such as futures

struct particle {
s id;
float positionl[3];
s

particle value = {};
if (communicator_rank == 0)
value = {42ull, {1.0f, 2.0f, 3.0f}};

MPI_Datatype position_data_type;
MPI_Type_contiguous(3, MPI_FLOAT, &position_data_type);
MPI_Type_commit (&position_data_type) ;

MPI_Datatype particle_data_type;
s < , 2> block_lengths{1l, 1};
<MPI_Aint, 2> displacements{0, sizeof(s) };
<MPI_Datatype, 2> data_types{MPI_UINT64_T, position_
data_typel;
MPI_Type_struct(2, block_lengths.data(), displacements.data(),
data_types.data(), &particle_data_type);
MPI_Type_commit (&particle_data_type);

MPI_Bcast(&value, 1, particle_data_type, O, MPI_COMM_WORLD) ;

MPI_Type_free(&position_data_type) ;
MPI_Type_free(&particle_data_type);

C Interface

Futures and Error Handling

- Requests can be std::futures supporting the concurrency support
library of the C++ standard

- mpi::when_all / mpi__when_any allows joining and syncing work-

flows that involve forking

- Exceptions are used when MPI functions fail

- Default error codes are available through the mpi::error namespace

32768 4+ ¢« Clnterface I Node .
i CInterface 2 Nodes *
16384 ® Clnterface 4 Nodes .‘
8192 - C Interface 8 Nodes ¢
@ Clnterface 16 Nodes L}
4006 4+ & C++ Wrapper 1 Node [) * N
¢ C++ Wrapper 2 Nodes * *
2048 ¢ C++ Wrapper 4 Nodes *+ Py) ¢ ¢
| 0 C++ Wrapper 8 Nodes +
—_ 1024 ¢ C++ Wrapper 16 Nodes ‘ o * * ¢ ¢
4 5124 Y o 1 ’
2 256 - 4 ¢ 0 '
= | L LY ® ’
= 128 ¢
& + ¢ y
410 & & 4§ % Ty ,
32 - R Nl . v !
¢
16 4 ’ % ¢
84 *
4 -
2

S S S N SRS R S SN A S S L e IRy
MV W P g?<§{@&

Message length [byte]

struct particle {
id;
<float, 3> position;
+s
particle value = {};
if (communicator_rank == 0)

value = {42ull, {1.0f, 2.0f, 3.0f}};

: :world_communicator.broadcast(value, 0);

C++ Interface

Code comparison of a simple messaging setup: Left using the standard MPI C-Interface. Right: Using our C++ Interface

Performance

We measure the performance of the library and compare it to equivalent
functionality implemented with the raw C interface on the mpiBench [3]
benchmark. Experiments with varying message length and node count
are repeated and averaged.

Experiments are ran on the RWTH Aachen CLAIX-2018 compute clus-
ter. Each node is equipped with 2 Intel Xeon Platinum 8160 Skylake
processors with 24 cores at 2.1 GHz. The network is provided by a high-
speed RDMA Omni-Path interconnect. The nodes are exclusively reser-
ved for the benchmarks to eliminate effects due to other processes.

The results are shown in the plot. Each data point represents the geo-
metric mean over the 11 MPI operations. The slight variances in runti-
me could be attributed to network traffic which applies even in exclusive
mode. The results of the two implementations do not show recognizable
patterns that indicate a disparity in performance.

Conclusion
We have presented a modern C++ interface for MPIl and demonstrated
that its performance overhead is negligible in comparison to the raw C

interface.

For further detail, we refer the reader to the source code, distributed
under the BSD 3-Clause license, accessible at

https://github.com/vrgrouprwth/mpi

or by scanning this QR code:

Acknowledgements

The authors gratefully acknowledge the German Federal Ministry of
Education and Research (BMBF) and the individual state governments
for supporting this work as part of the NHR funding.

References

[1] The Standard C++ Foundation, “C++ Core Guidelines,” 2015. [Online]. Availab-
le: https://github.com/isocpp/CppCoreGuidelines

[2] A. Polukhin, “Boost PFR,” 2016. [Online]. Available: https://www.boost.org/doc/
libs/master/doc/html/boost pfr.html

[3] A. Moody and H. Subramoni, “mpiBench,” 2019. [Online]. Available:
https://github.com/LLNL/mpiBench

