
MODE: A Modern ODE Solver for C++ and CUDA

Ali Can Demiralp1, Marcel Krüger1 and Tim Gerrits1

1Visual Computing Institute, RWTH Aachen

Abstract. Ordinary differential equations (ODE) are used to describe the evolution of one or more dependent variables using their
derivatives with respect to an independent variable. They arise in various branches of natural sciences and engineering. We present
a modern, efficient, performance-oriented ODE solving library built in C++20. The library implements a broad range of multi-stage
and multi-step methods, which are generated at compile-time from their tableau representations, avoiding runtime overhead. The
solvers can be instantiated and iterated on the CPU and the GPU using identical code. This work introduces the prominent features
of the library with examples.

INTRODUCTION

An ordinary differential equation (ODE) is an equation containing the derivative of one or more dependent variables
with respect to an independent variable. An nth order ODE is written in normal form as:

x(n) = f (t, x, x′, x′′, ..., x(n−1)) (1)

where t is an independent variable and x is a dependent variable. Such equations appear in various branches of natural
sciences and engineering where they are commonly used to model dynamic systems. As exact analytical solutions are
often not possible, numerical methods play an important role in estimating solutions to ODEs. Hence a lot of recent
literature [1, 2, 3, 4, 5] focuses on development of general and efficient numerical solvers.

This work presents a modern, efficient, performance-oriented ODE solver built in C++20. The solver contains
a wide range of explicit as well as implicit multi-stage and linear multi-step methods, which are constructed from
their tableau representations as defined in [6] at compile-time. It is fully compatible with CUDA, enabling CPU and
GPU solvers with identical code. Adaptive step size iterators are supported, including implementations of standard
error controllers. Moreover the library is capable of decomposing higher order ordinary differential equations to a
system of first order equations, and iterate them in a coupled manner. Aside from initial value problems, boundary
value problems are supported through the shooting method. We describe the prominent features of the library, and
demonstrate its usage.

RELATED WORK

Various ODE solvers were presented in the last decades. The GNU Scientific Library [7] provides several multi-
stage and multi-step ODE solvers, yet it is limited to low order methods and does not prioritize performance. The
SUNDIALS [1] suite contains ARKODE [2] and CVODE [3], which implement adaptive Runge-Kutta and linear
multi-step methods respectively. Although SUNDIALS covers a wide range of methods and is highly optimized,
it hardly utilizes modern programming idioms such as RAII due to being a C interface. More recently, Boost.Odeint
[4, 8] was proposed as an alternative built in C++. The library leverages language features such as function objects and
template meta-programming to create solvers that are capable of operating on arbitrary states. Although Boost.Odeint
has modernized solving ODEs, it remains as a C++11 library, with updates being limited to bug fixes. We build upon
the concepts introduced by Boost.Odeint, incorporating C++14/17/20 language features to the context of solving
ODEs. Aside from C and C++, there are libraries in several other languages. Notably, Sci.py and DiffEq.jl [5] provide
ODE solvers in Python and Julia respectively. Although these languages are capable of interfacing with C++, the
process often leads to verbose code and introduces performance overhead.

FIGURE 1. An outline of the library. The iterators apply methods to problems to generate solutions.

IMPLEMENTATION

An outline of the library is seen in Figure 1. We refrain from inventing new abstractions, and attempt to adapt existing
mathematical concepts to code directly. The three central concepts a user interacts with are the iterator, the method and
the problem. In an overview: The fixed- and adaptive-step iterators apply explicit and implicit methods to initial and
boundary value problems to generate solutions. The library is built with emphasis on four system quality attributes:

• Generality: It operates on initial and boundary value problems of arbitrary order, with dependent variables
consisting of arbitrary precision numbers, including complex numbers.

• Efficiency: It strives to match the performance of existing solvers, avoiding overhead introduced by the higher
level abstractions using compile-time constant evaluations where possible.

• Portability: It runs on any platform and compiler that supports the C++20 standard library, and is also compat-
ible with CUDA.

• Usability: It provides a uniform interface to all multi-step and multi-stage iterative methods for ordinary differ-
ential equations, using abstractions that match the theory.

The problem concept encapsulates the (initial) state of an ODE problem. Although problems may not have
common variables or methods, this concept enables the library components to require a problem as input. For example,
a method may require a problem to operate on, and further adjust its behavior based on the type of that problem. The
library currently implements two problems: the initial value problem and the boundary value problem. The users
provide the data, such as the initial/boundary values and the derivative functions, to the library in the form of problems.
The values and the functions may be references, meaning that the library does not require a copy of the initial state.
The problems are solved in-place by the iterators to avoid additional memory allocation. They contain the intermediate
and final solutions throughout iteration. The intermediate states can be saved manually by the user as necessary.

The method concept describes a numerical method for solution of ODEs. It requires a single function for applying
one iteration of the method. The multi stage method, multi step method and general linear method implement this
concept, accepting a tableau and constructing the said function at compile-time. The multi stage method distinguishes
between explicit and implicit methods according to the size of the tableau coefficients, which are expressed in lower
triangular form for explicit methods. It furthermore detects if the tableau contains an error estimate row and applies
the additional stage, modifying its return type at compile-time to contain the error accordingly. The multi step method
constructs an implicit method if the tableau defines both the a and b coefficients, and an explicit method if it only
defines the a coefficients.

The tableau concept encapsulates the coefficients that are necessary to construct a method. In the case of multi-
stage methods, the coefficients are of an (extended) Butcher tableau. For linear multi-step methods, the coefficients
are the vectors a and b appearing on the two sides of the equation. The library further contains tableau definitions for
general linear methods as described by Butcher in [6]. This, in turn, enables methods which combine multiple stages
with multiple steps. Aside from the coefficients, the tableau may optionally contain information about the (extended)
order of the method, which is utilized by several error controllers to compute default parameters. Overall, the tableau

#include <mode/mode.hpp >

using method_type = mode:: explicit_method <mode:: runge_kutta_4_tableau <float >>;
using problem_type = mode:: initial_value_problem <float , vector3f >;

int main(int argc , char** argv)
{

const auto problem = problem_type
{

0.0f, /* t0 */
vector3f (1.0f, 1.0f, 1.0f), /* y0 */
[] (const float t, const vector3f& y) /* dy/dt = f(t, y) */
{

const auto sigma = 10.0f;
const auto rho = 28.0f;
const auto beta = 8.0f / 3.0f;
return vector3f(sigma *(y[1]-y[0]), y[0]*(rho -y[2])-y[1], y[0]*y[1]-beta*y[2]);

}
};

auto iterator = mode:: fixed_step_iterator <method_type >(problem , 0.001f /* h */);
for (auto i = 0; i < 1000; ++i)

++ iterator;
}

Listing 1. A simple example iterating the Lorenz system.

concept defines the distinct properties of a method in a concise and uniform manner. From the viewpoint of a user, the
tableau is the only concept to be implemented to support custom multi-stage and multi-step methods.

The library contains a wide range of tableaux for explicit and implicit methods. Common explicit solvers such
as Runge-Kutta 4, Dormand-Prince 5, Bogacki-Shampine 5 and Tsitouras 5 are included. For stiff problems, implicit
solvers such as Radau IA/IIA and Rodas 4 can be used. Regarding multi-step methods, the library implements a
general version of Adams-Bashforth for arbitrary number steps, as well as the backward differentiation formula for any
order. For a complete list of the implemented tableaux, we refer the reader to the repository. Although the number of
tableaux are a fraction of what is provided by DiffEq.jl [5], the selection is nevertheless larger and more comprehensive
than most C and C++ solvers to date.

As the library implements iterative methods for ODEs, it is important to define a concept of iteration. We bor-
row the definition of a forward read-only iterator from the standard library, rather than creating a custom concept.
The iterators accept a method and a problem, and are responsible for iterating the method on the problem. We pro-
vide three realizations of this concept: fixed step size iterator, adaptive step size iterator and coupled iterator. The
fixed step size iterator can be used with any method, whereas the adaptive step size iterator is reserved for em-
bedded methods that provide an error estimate. It is capable of adjusting its step size based on the error, and may
potentially perform multiple trials per iteration. The coupled iterator accepts an array of first order problems obtained
by decomposing a higher order problem, and iterates them simultaneously.

The adaptive step size iterators additionally require a type satisfying the error controller concept. The error
controllers accept the results and the error estimate of an embedded method, decide whether to accept the current step,
and propose a size for the next step. The library implements several standard error controllers, including the integral
[9], proportional integral (PI) [10], and proportional integral derivative (PID) [11] controllers. The error controllers
include default parameters and common settings that are computed from the method order according to literature [9]
[10]. It is also possible to define custom error controllers by implementing the concept and passing it to the iterators.

The implicit methods require root finding algorithms as they solve a system of nonlinear algebraic equations
in each step. The root finder concept encapsulates such algorithms. The library provides an implementation of the
Newton method satisfying this concept, along with a modified version which evaluates the Jacobian once instead of at
each iteration. With the exception of linear subspace solvers, root finders depend on and therefore require the problems
to define an additional derivative. Furthermore, they rely on linear algebraic operations for computing the inverse of
the Jacobian. For this purpose, we utilize Eigen3 [12] as it provides the necessary operations, is highly optimized, and
supports CUDA.

An example application using the library for solving the Lorenz system is seen in Listing 1. It is possible to
instantiate and iterate the problem on the GPU using identical code. The library does not explicitly provide parallelism,
but instead lends itself for use by parallel C++ and CUDA applications. This is an intentional decision based on our

experience with the parallelization features of [4], which tend to limit actions such as early termination of states that
fulfill a certain condition. High-performance computing applications that consume the library are expected to rely on
broader parallelization schemes than one that is limited to solving ODEs. Our intent is to integrate into such schemes,
rather than forcing a scheme that is potentially orthogonal to them. Users seeking a quick parallelization over problems
can use OpenMP, which is provided by most compilers today.

CONCLUSION & FUTURE WORK

We have presented a library for solving ODEs in modern C++. The library provides several benefits in comparison
to its predecessors: It is capable of generating multi-stage and multi-step methods from their Butcher tableaux at
compile-time. It utilizes constant-evaluated contexts to move run-time overhead to compile-time where viable. It
strives for full compatibility with CUDA, enabling CPU and GPU solvers with identical code. It is further capable of
solving initial and boundary value problems of arbitrary order through coupling. The library is open-source software
distributed under the BSD 3-Clause license, accessible at https://github.com/vrgrouprwth/mode.

In the future, we would like to benchmark the performance of the library and compare it to its alternatives. We
further plan on expanding the selection of Butcher tableau with the methods presented in [5, 6, 9, 10]. Automatic
computation of Jacobians via algorithmic differentiation or finite differences for use with implicit methods remains
as future work. Another direction is adding support for stochastic differential equations (SDEs), random differen-
tial equations (RDEs), delay differential equations (DDEs), differential algebraic equations (DAEs), and stochastic
differential algebraic equations (SDAEs).

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the German Federal Ministry of Education and Research (BMBF) and the indi-
vidual state governments for supporting this work/project as part of the NHR funding.

REFERENCES

[1] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward,
ACM Transactions on Mathematical Software 31, 363–396 (2005).

[2] D. R. Reynolds, D. J. Gardner, C. S. Woodward, and R. Chinomona, arXiv:2205.14077 (2022),
10.48550/ARXIV.2205.14077.

[3] S. D. Cohen, A. C. Hindmarsh, and P. F. Dubois, Computers in Physics 10, 138–143 (1996).
[4] K. Ahnert and M. Mulansky, “Odeint – Solving Ordinary Differential Equations in C++,” in International

Conference on Numerical Analysis and Applied Mathematics 2011, AIP Conference Proceedings 1389,
edited by C. T. Theodore E. Simos, George Psihoyios and Z. Anastassi (American Institute of Physics,
Halkidiki, Greece, 2011), pp. 1586–1589.

[5] C. Rackauckas and Q. Nie, Journal of Open Research Software 5 (2017), 10.5334/jors.151.
[6] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, 3rd ed. (John Wiley & Sons, Chich-

ester, 2003).
[7] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and R. Ulerich, GNU

Scientific Library Reference Manual, 3rd ed. (Network Theory Limited, Godalming, 2009).
[8] K. Ahnert, D. Demidov, and M. Mulansky, “Solving Ordinary Differential Equations on GPUs,” in Numeri-

cal Computations with GPUs, edited by V. Kindratenko (Springer International Publishing, Cham, Germany,
2014), pp. 125–157.

[9] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed.
(Springer, Berlin, 1993).

[10] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Prob-
lems, 2nd ed. (Springer, Berlin, 1996).

[11] H. Ranocha, L. Dalcin, M. Parsani, and D. Ketcheson, Communications on Applied Mathematics and Com-
putation (2021), 10.1007/s42967-021-00159-w.

[12] G. Guennebaud, B. Jacob, et al., Eigen: A C++ Linear Algebra Library, 2010.

