
StudyFramework: Comfortably Setting up and Conducting
Factorial-Design Studies Using the Unreal Engine

Jonathan Ehret1* Andrea Bönsch1 Janina Fels3 Sabine J. Schlittmeier2

Torsten W. Kuhlen1

1 Visual Computing Institute, RWTH Aachen University, Germany
2 Work and Engineering Psychology, RWTH Aachen University, Germany

3 Institute for Hearing Technology and Acoustics, RWTH Aachen University, Germany

Figure 1: The pipeline of the StudyFramework : The factorial-design setup is randomized into an ordered list of conditions. This list
can then be executed in VR, providing an helpful control interface to the experimenter. Finally, all gathered data is carefully logged.

ABSTRACT

Setting up and conducting user studies is fundamental to virtual
reality research. Yet, often these studies are developed from scratch,
which is time-consuming and especially hard and error-prone for
novice developers. In this paper, we introduce the StudyFrame-
work, a framework specifically designed to streamline the setup
and execution of factorial-design VR-based user studies within the
Unreal Engine, significantly enhancing the overall process. We elu-
cidate core concepts such as setup, randomization, the experimenter
view, and logging. After utilizing our framework to set up and con-
duct their respective studies, 11 study developers provided valuable
feedback through a structured questionnaire. This feedback, which
was generally positive, highlighting its simplicity and usability, is
discussed in detail.

Index Terms: General and reference—Empirical studies; Human-
centered computing—Virtual reality; Human-centered computing—
User studies; Software and its engineering—Frameworks;

1 INTRODUCTION

When developing new techniques or interfaces for virtual real-
ity (VR), it is essential to assess their effectiveness through con-
trolled user studies to confirm their optimal performance and mean-
ingful enhancement over existing methods. Moreover, conducting
user studies is essential to acquire a comprehensive understanding
of human behavior. Here, VR is an emerging tool in, for example,
psychological research where it can help to conduct controlled ex-
periments in settings closer to real life than classical lab experiments.
However, setting up those studies is time-consuming and holds a

*e-mail: ehret@vr.rwth-aachen.de

lot of potential caveats with respect to experimental design and data
management, such as counterbalancing randomized condition orders
and thoroughly storing all relevant data. If setup errors go unnoticed
until the study conductance or data evaluation, there is a substantial
risk of data corruption, making parts or all of the data unusable.

Modern game engines like the Unreal Engine or Unity are readily
available and are increasingly often used as they provide a lot of
helpful tools to simplify setting up immersive virtual environments
(IVEs) and also to implement complex interactions. However, their
complex internal architectures can introduce numerous challenges
when trying to implement a robust study that, for example, should
include different virtual scenes, especially for engine novices. On
top of that, the required code for setting up such studies is often very
similar. Consequently, identical code has to be reproduced over and
over again, potentially introducing unwanted side effects.

To facilitate the development and execution of factorial-design
studies using the Unreal Engine, we present the StudyFramework.
Factorial design thereby means that developers specify different fac-
tors to be varied across defined levels, and the system automatically
generates and counterbalances the required conditions per paticipant
(further details in Section 3).

Next, we explore related approaches. We then define our contri-
butions by outlining our goals and detail the core components of
our framework, employing an illustrative 2-factorial study, where
the visibility of displayed letters is judged based on color and size
(see Fig. 1 and supplemental video). Following this, we present an
evaluation based on feedback from 11 independent study developers
— computer science students or researchers in acoustics or psychol-
ogy — who have used our framework. Rather than conducting an
artificial study to compare our framework with existing ones or none
at all, we deliberately chose to gather real-world experiences and
insights from those actively using our framework. This approach al-
lowed us to enhance our solution based on practical usage scenarios.
The paper concludes with a discussion of these results.



2 RELATED WORK

Several frameworks and tools exist that should support researchers
from diverse research areas to implement, set up, and conduct ex-
periments in VR using various rendering engines. Most of them
are built on top of Unity. One of these is the Unity Experiment
Framework (UXF) [6]1, which allows to specify experimental orders
a priori or progressively using a session-block-trial model and also
supports remote experiments outside the lab. Another possibility
is BMLtux [3]2, which allows to implement and conduct factorial-
design experiments, aiding experimenters in visually keeping track
of the progress of each session. Further frameworks are the Virtual
Reality Scientific Toolkit (VRSTK) [32]3 and the Unified Suite for Ex-
periments (USE) [31]4, which both provide more integrated sensing
capabilities, e.g., for brain activity. USE does that specifically by
introducing a hardware device (USE SyncBox) to integrate measure-
ments of electrophysiological recording devices with high-precision
timing. VRSTK offers advanced features enabling experimenters
to virtually immerse themselves within the IVE for enhanced in-
teraction. Furthermore, it facilitates session replay and analysis.
A recent framework that enables running distributed experiments
with the potential for multiple remote participants is Ubiq-Exp [27].
It also supports conducting experiments both with and without an
experimenter overseeing the process. Finally, EVE [19]5 allows
the integration of a commercial plugin (MiddleVR) so that exper-
iments can be run in cave automatic virtual environment (CAVE)
systems, as Unity natively only supports VR using head-mounted
displays (HMDs). As this concludes our discussion on Unity frame-
works, interested readers can find a detailed feature comparison of
Unity frameworks for user study design and execution in [32].

Considering other frameworks besides Unity, vexptoolbox [23],
provides more experimental control to the commercial VR plat-
form Vizard (World-Viz, Santa Barbara, CA, USA) or a commercial
solution for conducting VR experiments and exposition therapy:
CyberSession6. Lastly, R2VR [30] should also be mentioned, which
allows to build simple VR experiments directly in R, a well-known
statistical software environment. For experiments not requiring VR,
often python-based frameworks are used, like PyEPL [17] or, even
more often, PsychoPy [22], which provides a versatile graphical user
interface and is especially prominent for low-latency stimuli presen-
tation and measurements. The latter was confirmed by Bridges et
al. [4], performing a large-scale study comparing stimuli timing and
latency for desktop-based experimental frameworks.

While the aforementioned frameworks support implementing
and conducting an experiment to various degrees, there are also
frameworks tailored to specific research domains, requiring mini-
mal customization only. For example, VREX [29]7 aids in setting
up experiments in the field of experimental psychology and neuro-
science in complex virtual indoor scenes. There are several toolkits
to build navigational studies, e.g., PandaEPL [25], Landmarks [26],
NavWell [9], or DeFINE [28], which require little to no coding.
VREVAL [2], an Unreal-Engine-based tool, facilitates the efficient
setup and execution of studies aimed at evaluating architectural
models. Another Unreal tool is DomeVR [24], which was specif-
ically designed to run experiments with rodents but also humans
in a dome-shaped display device. For acoustical research, Oticon
Medical Virtual Reality (OMVR) [21] was developed and provides a
variety of valuable virtual scenes.

To the best of our knowledge, there exists no general, open-

1https://github.com/immersivecognition/unity-experiment-framework
2https://github.com/BioMotionLab/TUX
3https://github.com/ixperience-lab/VRSTK
4https://github.com/att-circ-contrl/use
5https://cog-ethz.github.io/EVE/
6https://www.cybersession.info/
7https://vrex.mozello.com/

source framework to design and conduct factorial-design studies
using the Unreal Engine, e.g., comparable to BMLtux. Addition-
ally, many of the mentioned tools, due to their specificity limiting
adaptability, lack the modularity required for an easy and seamless
integration into a research prototype for evaluation. Finally, Aguilar
et al. convincingly argue that the auditability and reproducibility
of studies are paramount, emphasizing the current limitation of
many tools and frameworks in effectively addressing these crucial
aspects [1] (preprint).”

3 STUDYFRAMEWORK

Addressing the aforementioned gap, we introduce a new framework,
called StudyFramework8, based on the Unreal Engine (currently
developed for version 4.26 and 4.27 and 5.3). The core idea is
to provide a light-weight solution that supports developing and
conducting user studies with the following main aspects:

• easy setup of factorial-design studies
• out-of-the-box solutions for randomization/counterbalancing
• thoroughly tested and redundant data logging
• simple graphical interface facilitating monitoring and control-

ling user studies
• focus on VR but also a possibility for desktop studies
• support for multiple VR platforms, like HMDs and CAVE

In academia, a lot of studies are implemented and conducted by
students evaluating their thesis projects, for example, having imple-
mented a new interaction metaphor. Thereby they often lack both
experience in the engine used and ample time to implement and
thoroughly test their user study. Additionally, as mentioned above,
researchers from other domains, like psychology, can benefit greatly
from conducting VR user studies using game engines, while they
potentially do not have a software development background. Conse-
quently, one primary goal is to create a framework that is particularly
user-friendly for individuals new to game engines, specifically within
the context of Unreal Engine, as well as study design. While it is
comparably simple to setup small interactive scenes in the Unreal
Engine, mastering all intricacies to reliably conduct experiments
(e.g., fading between scenes, having full control especially when
something unexpected happens, reliably logging data, or counterbal-
ancing orders) adds an extra burden onto novice developers. To this
end, we provide the aforementioned functionality and made it acces-
sible from both code (in this case C++) and also the visual scripting
language provided by Unreal (called blueprints). The framework
has been implemented as an Unreal plugin, ensuring an easy and
seamless integration into any Unreal project. Another objective is
to keep the framework lightweight, emphasizing its core purpose of
facilitating the creation and execution of factorial-design studies. As
a deliberate choice, we thus did not incorporate features unrelated
to the study design or data management, such as immersive ques-
tionnaires. Users seeking this functionality can seamlessly integrate
them through other plugins, like [16], or embed web questionnaires
into the IVEs.

These mentioned aspect separate this approach from most of the
existing tools mentioned above. Grübel argues in a recent paper [18]
that there are already sufficient experimental frameworks. However,
we are convinced that our framework can contribute to a crucial
gap. First, due to its modular design, we avoid the issue of overly
specialized and overloaded frameworks, allowing novice as well
as experienced developers to use it. Second, to the best of our
knowledge, it is the first of its kind for the Unreal Engine, setting
it apart from the aforementioned plethora of Unity-based solutions.
This is significant, because Unreal, in contrast to Unity, enables VR
application for CAVEs [10] through its native nDisplay plugin, thus

8https://git-ce.rwth-aachen.de/vr-vis/VR-Group/unreal-
development/plugins/unreal-study-framework



ParticipantID Gender Phase Color Size Letter Map Visibility Time
0 male Warm-Up Orange Large y LivingRoom good 4.19
0 male Warm-Up Blue Small x LivingRoom bad 8.84
0 male Warm-Up Orange Small y LivingRoom good 9.04
0 male Warm-Up Blue Large x LivingRoom good 30.49
1 male Warm-Up Orange Large y LivingRoom bad 10.26
1 male Warm-Up Blue Small x LivingRoom good 7.44

...
Table 1: Excerpt of an example phase log file, here for the example study setup used in Fig. 2 and Fig. 3. The csv file format is split into columns
here for visibility. It contains the participant ID, independent variables (here: Gender), the phase name, factor levels (here: Color, Size, Letter,
Map), dependent variables (here: Visibility) and the duration of the condition.

Figure 2: The Details section of a StudySetupActor. In the third
section, multiple phases are specified. The specifics of one of the
phases is expanded on the right, specifically also expanding one of
the factors (Color ) details, so its levels can be seen.

enabling a larger range of VR display settings for the studies. This
is especially important for us, as we run a CAVE with a 49-node
cluster [20]. Third, Unreal is open-source and its user-friendly visual-
scripting blueprints provide an accessible programming interface,
particularly suited for novice developers.

3.1 Components
The core idea of this framework is to develop factorial-design stud-
ies (similar to [3]). Factorial design is an experimental setup that
consists of two or more independent variables also known as factors,
with each factor having multiple levels. With a full factorial design,
all possible combinations of the levels of a factor can be studied
against all possible levels of other factors (in contrast to fractional
factorial designs, systematically only showing a fraction of these
conditions to each participant, but which are not directly covered
here). Per condition (combination of specific levels per factor), data
for one or multiple dependent variables (DVs) is gathered. Similar
to blocks in the session-block-trial model (cp., [6]), we structure the
experiment in different phases for which specific factors and DVs
are defined individually (see Fig. 2). Sometimes a task is repeated
multiple times in the same condition, for example, if multiple se-
lection tasks are performed consecutively, and data beyond a mean
performance score should be collected. Therefore, in addition to
the previously specified DVs collecting one value per condition,
we introduced special multiple-trial DVs. Lastly, also independent
variables (IVs), going beyond the aforementioned factors, can be
specified for which the data is collected at the very beginning of the
experiment by means of input prompts shown on the experimenter
screen (multiple-choice or text, for example, participant-specific
data that should be reacted on). Similarly, participant IDs can be

set at the start, but for counterbalancing a sequential number is also
always stored internally.

Since one key idea of the StudyFramework is to require as little
programming background as possible for study developers, we tried
to utilize graphical user interface (GUI) elements of the Unreal
Editor. To create a new study, developers first drag-and-drop a
StudySetupActor (actor is the Unreal term for any object within a
map) into an empty map. Then the details panel (see Fig. 2) is used
to configure all crucial design aspects of the experiment, which will
be described below. Thereby, the configuration is directly stored
and updated into a configuration file in human-readable json format.
Developers can switch those files, for example, to assess different
study configurations during development (see the second section in
Fig. 2). When starting the study, the setup information is parsed and
one singleton object (derived from the GameInstance class of the
Unreal architecture) is created which holds all interfaces, e.g., for
logging or controlling the study. A reference to this object is easily
accessible both in C++ and blueprints.

However, before a session for a specific participant is started,
the order of the individual conditions has to be randomized and
balanced according to the setup. The framework supports both
within- and between-subjects factors (cp., [11]). When multiple
within-subject factors are specified for a phase, the conditions are
created by combining each level of one factor with all the levels of
the other factors. This process results in the Cartesian product of all
factors (see Fig. 1). The default case would be to balance the order of
these generated conditions using Balanced Latin Squares [12] so that
the position at which each condition is presented and the condition
after which each condition is presented is counter-balanced over
participants to avoid potential position and order effects. To achieve
this, we use the sequential number of the participants to pick an
appropriate row from the Balanced Latin Square. Additionally, we
shift the picked row of the Latin Square by the phase ID to avoid
potential identical randomization in two repeated phases with the
same factors. Moreover, our framework allows factors to always
be presented in order (i.e., first all conditions with the first level
and so on) or at least such that the same levels of one factor are
presented en bloc For instance, if the virtual scene is varied, all
conditions within the same scene can be shown back-to-back, to
minimize frequent scene transitions. Obviously, only one factor per
phase can be specified as either of the two. This option can also
be used to implement repetitions by defining a repetition factor and
setting it to “in order” so that all first repetitions are finished before
the second repetitions start. Furthermore, sometimes there should
be balancing, e.g., of a task, which is not a factor to be examined.
This is possible by defining non-combined factors, which do not
contribute to the Cartesian product and are potentially randomly
mapped to the aforementioned conditions. As a last resort, there
is also a specific callback function that can be implemented by
developers and gives the possibility to reorganize or filter generated
conditions. Further documentation and examples can be found



Figure 3: The experimenter view overlay displayed over a demo study
scene. Additionally to the status bar (top) and log section (bottom
left), the condition list is currently shown (can be de-/activate by the
top button on the left). In the list completed conditions are marked
in green and the current condition is highlighted in blue. Already
gathered data is displayed.

in the project Wiki9. As a tool for checking the setup balancing
for correctness, we added the possibility to generate the condition
lists of an arbitrary number of participants and store them into a
single text file for further inspection (see “Generate Test Study Runs”
button at top of Fig. 2). In the shown example, Size and Color are
2-level factors, while Letter is a non-combined, randomly assigned
factor with different levels in the Warm-Up and the Block1 phase.
Additionally, Block1 has a third factor Repetition with two levels so
that each combination of the first two factors is presented twice.

The framework also includes logging for positional data, data
gathered for DVs, and potential events, all with timestamps. An
event can be, for example, a participant interacting with a specific
object, for which developers can log an arbitrary text, such as “Ob-
ject A picked up”, using provided interfaces. Adding new actors of
which position and orientation should be logged at each frame of
the application, or less often if specified, is straight-forward by just
adding a special logging component to these actors. Additionally,
this component also allows to log custom data frame-wise, like the
status of the actor or whatever is required in the specific use case.
For each study phase a table in csv-format (comma separated values)
is created, holding data collected for the DVs as well as the duration
of each condition for all participants. These tables are created in long
format, holding one line per condition and participant, as opposed
to one line per participant, so that they can be easily loaded into
statistics tools like R (see Tab. 1). The aforementioned multiple-trial
DVs, do not fit into this format and therefore create one csv-file per
variable with a line per recorded data point, so potentially multiple
lines per condition and participant. Furthermore, all data is also
logged redundantly per participant and session into a separate text
file. In general special care was taken that all data is stored safely to
avoid potential data losses.

For an immersive study, a virtual scene is mandatory and is some-
times also varied as part of the study. It is therefore also formalized
as a factor in our framework. When switching scenes, we recom-
mend to use fading, i.e. transitioning to a predefined color and
after a while back to the new scene, to not confuse participants by
immediately changing their entire surroundings and potential lags
due to loading. To this end a configurable fading is implemented
that works in VR and desktop mode and also defines callbacks that
allow developers to react to a new level being loaded or having faded
in, e.g., by starting a task only once the new scene is faded in.

To support experimenters, we added an experimenter view. It

9https://git-ce.rwth-aachen.de/vr-vis/VR-Group/unreal-
development/plugins/unreal-study-framework/-/wikis

Q1 Experienced in Unreal

Q2 Experienced in C++ development

Q3 Experienced in factorial study design

Q4 Easy usage of study setup

Q5 Randomization options were clear

Q6 Wiki was helpful

Q7 C++/Blueprint interfaces sufficient

Q8 Needed to look in source code freq.

Q9 Needed a lot of help

Q10 The experimenter view helped

Q11 Felt in control conducting study

Q12 Felt confident with recovery options

Q13 Used “Show Conditions” regularlyQ13 Used 'Show Conditions' regularly

Q12 Felt confident with recovery options

Q11 Felt in control conducting study

Q10 The Experimenter View helped

Q9 Needed a lot of help

Q8 Needed to look in source code frequently

Q7 C++/Blueprint Interfaces sufficient

Q6 Wiki was helpful

Q5 Randomization options were clear

Q4 Easy usage of study setup

Q3 Experienced in factorial study design

Q2 Experienced in C++ development

Q1 Expierenced in Unreal

1 2 3 4 5

Figure 4: The answers by n = 10 developers given to the individual
statements as box plots on a scale from 1 (Strongly Disagree) to 5
(Strongly Agree). The stars indicates the mean while the boxes show
the quartiles with whiskers extending to the full range and outliers
being displayed as dots. Statements are given here as shortened
versions, full-length statements can be found in Appendix A.

contains a status bar (see Fig. 3), that always shows what status the
application is in and which condition is currently presented, and a
log section showing the latest log messages. Developers can decide
for logged messages specifically whether they should also be shown
in the log section, to give the experimenter all relevant information
and simultaneously not overload this log so that relevant information
might be missed. On clicking the “Show Conditions” button in this
experimenter view a scrollable condition list can be displayed (see
Fig. 3). There, on top of seeing which condition is currently ac-
tive and which are already finished, recorded data of DVs is shown.
Furthermore, to simplify experiment development and debugging,
specific conditions can directly be started there without jumping
through previous conditions. This functionality can also be used
during study execution to restart a specific condition, e.g., if the
participant was distracted by something else happening and missed
the start of a condition or wants to repeat a familiarization phase.
This restarting is obviously also noted in the participant’s log file, but
should be used very carefully during execution, potentially having
confounding effects. The experimenter view can be shown as an
overlay on what the participant sees in the HMD or in a separate
window potentially on a second screen in desktop mode. This study
control functionality is expanded by the possibility of recovering
failed study sessions. If on starting the study an unfinished previ-
ous study run is detected, the experimenter can choose whether to
continue the study from the last unfinished condition or start with
a new participant from the beginning. This is helpful for quick and
clean recovery if the software crashes unexpectedly during study
execution.

3.2 Evaluation

The StudyFramework was already successfully used in 14 experi-
ments (e.g., [7, 8, 13–15]) and successively updated and improved in
that process. All developers of these studies (if not the first author of
this paper) were asked to fill out a short subjective evaluation ques-



tionnaire after conducting their respective study. This questionnaire
contained general questions with regard to the experience of the
developers (see Appendix A), specific questions for features of the
framework, and the System Usability Scale (SUS) questionnaire [5].

In total we received filled-out questionnaires from 11 different
study developers over the course of one and a half years of which one
had to be excluded due to incompleteness. Of the remaining n = 10
projects, three were bachelor thesis and four master thesis projects.
The remaining three were in the context of different PhD projects
in the realm of acoustic, psychology, and VR research. Answers to
the questions regarding prior experience, ease of development, and
confidence during study execution, which were rated on a 5-point
Likert scale between 1 (Strongly Disagree) and 5 (Strongly Agree),
can be found in Fig. 4. Additionally, when asked what the most
helpful feature was, five study developers (50%) stated the status bar,
three (30%) the “Next Condition” button, and one each stated the
output log (10%) and “all of them” (10%). When asked for the least
helpful feature seven participants (70%) answered “None”, while
the “Next Condition” button, the “Show Conditions” button, and the
output log where picked by one developer (10%) each.

Evaluating the results of the SUS yielded a mean score of 76.5
(SD = 16.6) on a scale of 0 to 100, which is considered a “good”
usability score. When looking closer at the individual scores, in
five cases the framework was rated above 80, which constitutes an
excellent score, however, in one case it was even rated as low as 40
(while all other ratings stayed above 65, which is the average SUS
rating). Following up on the free field comments in this particular
case did not yield any insights on a specific shortcoming.

However, when looking at the free comments of all developers
regarding implementation ease, there are a few inconveniences and
feature requests mentioned. Some of them (like logging custom data
or debugging functionality requested) were already solved during
further development of the framework, but two still persist. One
study developer stated that “The nested design of the study setup
(phases etc.) was at times hard to digest, partly also because of
the small fonts” (see Fig. 2). Another comment hinted at the miss-
ing possibility to dynamically insert, e.g., “a phase only between
specific conditions of another phase”, which goes beyond standard
factorial design and was thus consciously not added. However, also
several comments stated, e.g., “the framework makes creating a
study very easy, especially if you are new to Unreal” or that “it
was easy to use for a beginner in study design and actually helped
to understand the structure of studies with (in)dependent variables,
factors and conditions” and that the StudyFramework’s “blueprints
were really nice and easy to use.” Looking into the comments re-
garding conducting the actual study, the only negative comments
regarded shortcomings that were already fixed in the meantime or
feature requests that would go beyond the targeted scope of this
framework. One developer, for example, requested the possibility
to reset the participant’s position which is very specific and should
therefore rather be implemented for a study individually. Apart from
that, there were positive comments like “the possibility to restart the
study where the participant left of as well as the good logging came
in very handy” and “during execution of the study, it was pretty
good. I could not think of something to immediately improve.”

4 DISCUSSION

When looking at the results of questions Q1 - Q3, we can conclude
that we had rather novice users: While some of them were more
proficient in C++ development, nearly all of them were very new
to Unreal and study design. Although the framework should also
benefit more proficient developers in not having to write study code
from scratch, the plugin was especially designed with Unreal novice
users in mind. Therefore, it is very encouraging that they found
“the usage of the StudySetupActor clear and easy” (Q4, M = 3.9,
SD = 0.3). The “different randomization and ordering options” in

this setup, however, were apparently experienced as less clear (Q5,
M = 3.2, SD = 0.9). This is also illustrated by the comment regard-
ing the complexity of the nested design, probably referring to the
nested setup of phases, factors, and levels. Partly, this might already
have been improved, since we simplified the condition creation and
balancing during further development, e.g., removing dedicated rep-
etition functionality which could just as well be implemented with
an additional factor. At the same time also more documentation
and several examples were added to the Wiki of the respective git-
project9. However, there might also be room for improvement with
regard to the clearness of the randomization and balancing. The
Wiki in general and the provided interfaces were rated well above
average (Q6 & Q7). This can also be seen in the low ratings to
the statement “I had to look into the source code frequently to un-
derstand what was going on” (Q8, M = 2.2, SD = 0.8). However,
looking at the answers to “I needed a lot of help to develop the study”
(Q9, M = 2.7, SD = 0.7) reveals that still some additional help was
required, albeit that these ratings drop over time (the only “4”-rating
was at the beginning of the evaluation, while the last ratings were
“2”). That potentially hints that the quality improved over time, but
could also be caused by other factors. Furthermore, the statement
does not clearly differentiate between needing help to understand
the StudyFramework or with study design in general.

These observations together with the relatively high system usabil-
ity score bring us to the conclusion that the developed framework is
well usable by novices to set up factorial-design user studies, which
was one of our main goals. The pursuit of simplicity inevitably limits
the ability to accommodate more intricate configurations, such as
those requested by a developer to dynamically adjust conditional
orders based on participants’ performance or choices. But overall
the provided functionality seems sufficient and user-friendly.

Another important aspect of the framework is the support for
experimenters during the execution of a study by means of a GUI.
Developers were very grateful for the experimenter view and agreed
that it was helpful (Q10, M = 4.5, SD= 1.0) and greatly agreed with
the statement “I felt in full control over the study” (Q11, M = 4.0,
SD = 1.2). Only one developer, using an early version of the frame-
work, rated both with 2. Reported problems were subsequently fixed.
Another participant asked for the possibility to restart an already
started condition in the conditions list (using the “Go to” button,
see Figure 3), which was initially deactivated during study runs but
consequently provided to grant experimenters full control. A sim-
ilarly enabling functionality is the recovery on crashed study runs
(Q12, M = 3.6, SD = 1.1). However here, experimenters did not
feel just as confident. This might have come, because they did not
test it thoroughly before starting the study and did not implement it
themselves, so they were not entirely sure what would happen. We,
however, implemented this feature in a way that no data loss can
appear, because potentially removed data from an already started,
but not finished, condition would be backed up before removal.
Generally, the features within our experimenter view often go unim-
plemented in many studies that are developed from scratch. Due to
time constraints, essential functions are prioritized over convenience
features, relegating these valuable additions to the bottom of the
priority list. This is again a strong argument for using our proposed
framework, as feeling in control while conducting a user study is
a very reassuring feeling for the experimenter and potentially also
increases the number of valid and useful data sets gathered. Which
particular feature was useful for which study had a larger spread,
this can be seen in the answers to Q13 but also in the answers to the
most and least helpful feature. While the status bar was liked most
by a majority of experimenters, there is no clear preference for a
least helpful feature that potentially could be removed, hinting that
all implemented features are well integrated and supportive.

However, the evaluation is based on a limited number of sub-
jective responses (N = 10) and can therefore only be generalized



with caution. Furthermore, as stated, the framework was developed
continuously during data gathering so that some features might have
become more helpful in the process. Nevertheless, we are confident
that the presented StudyFramework provided value to the surveyed
developers and facilitated their development as it will for future
study developers.

For future developments of our framework, our focus will be on
enhancing user-friendliness, enabling new as well as experienced
developers to quickly and effortlessly set up new studies, mini-
mizing the likelihood of unforeseen issues arising during or after
study execution. Thus, our strategy revolves around optimizing and
streamlining our current functionality based on incoming developer
feedback and future Unreal versions, while we will only incorporate
new features that align with our vision of a light-weight, general
framework in response to user requests. Additionally, we appreciate
the initiative of Aguilar et al. [1] to increase the reproducibility of
experiments. While our StudyFramework already contributes to this
goal, we believe that the use of widely accepted common formal
descriptions could further enhance reproducibility. Consequently,
we are open to engaging in discussions to determine the appropriate-
ness of our current json file implementation or explore whether other
data formats might offer superior compatibility and reproducibility
benefits.

5 CONCLUSION

We presented the StudyFramework, an open-source light-weight Un-
real plugin specifically designed for novice developers to easily set
up and conduct factorial-design user studies. The framework thereby
primarily focuses on VR experiments in HMDs and CAVEs, while
also being suitable for desktop-based studies. To date, the frame-
work has been utilized for 14 VR-based user studies. An evaluation
of responses from 10 involved study developers has confirmed its
ease of use, streamlining the implementation process, and providing
experimenters with a sense of control during study execution. We are
committed to continuously enhance the framework’s functionalities
and compatibility with newer engine versions, with our current ef-
forts directed toward making it compatible with Unreal Engine 5.3.

ACKNOWLEDGMENTS

This research was funded by the German Research Foundation
(DFG) within the project ”Listening to, and remembering conver-
sations between two talkers: Cognitive research using embodied
conversational agents in audiovisual virtual environments”, which
is part of the DFG Priority Program ”AUDICTIVE” (SPP 2236).
Special thanks goes to Marius Schmeling, Patrick Nossol, and Malte
Kögel for their support in developing this framework. Additionally,
the authors want to thank Daniel Zielasko and Isabel Schiller for the
fruitful discussion in conceptualizing this work.

REFERENCES

[1] L. Aguilar, M. Gath-Morad, J. Grübel, J. Ermatinger, H. Zhao,
S. Wehrli, R. W. Sumner, C. Zhang, D. Helbing, C. Hölscher, and
E. Zürich. Experiments as Code: A Concept for Reproducible, Au-
ditable, Debuggable, Reusable, & Scalable Experiments. arXiv preprint
arXiv:2202.12050, 25:2022, 2 2022. doi: 10.48550/arXiv.2202.12050

[2] G. Bailey, O. Kammler, R. Weiser, S. Schneider, and E. Fuchkina. Inte-
grating Immersive Virtual Environment User Studies into Architectural
Design Practice: A Pre-Occupancy User Study of Train Station Waiting
Preferences With VREVAL. Proceedings of the 2022 Annual Modeling
and Simulation Conference, ANNSIM 2022, pp. 644–655, 2022. doi:
10.23919/ANNSIM55834.2022.9859371

[3] A. O. Bebko and N. F. Troje. bmlTUX: Design and Control of Experi-
ments in Virtual Reality and Beyond. i-Perception, 11, 7 2020. doi: 10.
1177/2041669520938400

[4] D. Bridges, A. Pitiot, M. R. MacAskill, and J. W. Peirce. The timing
mega-study: Comparing a range of experiment generators, both lab-
based and online. PeerJ, 8:e9414, 7 2020. doi: 10.7717/peerj.9414

[5] J. Brooke. SUS-A quick and dirty usability scale. Usability Eval. Ind.,
189, 1995.

[6] J. Brookes, M. Warburton, M. Alghadier, M. Mon-Williams, and
F. Mushtaq. Studying human behavior with virtual reality: The Unity
Experiment Framework. Behavior Research Methods, 52:455–463, 4
2020. doi: 10.3758/s13428-019-01242-0

[7] A. Bönsch, T. Sittart, J. Ehret, and T. W. Kuhlen. Where Do They Go?
Overhearing Conversing Pedestrian Groups during Scene Exploration.
In ACM International Conference on Intelligent VirtualAgents (IVA

’23), p. 3. ACM, 2023. doi: 10.1145/3570945.3607351
[8] A. Bönsch, L. B. Zimmermann, J. Ehret, and T. W. Kuhlen. Whom

Do You Follow? Pedestrian Flows Constraining the User’s Navigation
during Scene Exploration. In ACM International Conference on Intelli-
gent Virtual Agents (IVA ’23), p. 3. ACM, 2023. doi: 10.1145/3570945.
3607350

[9] S. Commins, J. Duffin, K. Chaves, D. Leahy, K. Corcoran, M. Caffrey,
L. Keenan, D. Finan, and C. Thornberry. NavWell: A simplified
virtual-reality platform for spatial navigation and memory experiments.
Behavior Research Methods, 52:1189–1207, 6 2020. doi: 10.3758/
S13428-019-01310-5

[10] C. Cruz-Neira, D. Sandin, R. V. Kenyon, and J. C. Hart. The cave - au-
dio visual experience automatic virtual environment. Communications
of The ACM - CACM, 1992.

[11] D. W. Cunningham and C. Wallraven. Experimental Design: From
User Studies to Psychphysics. A K Peters/CRC Press, 2012. doi: 10.
1201/b11308

[12] A. L. Edwards. Balanced Latin-Square Designs in Psychological
Research. The American Journal of Psychology, 64:598–603, 1951.
doi: 10.2307/1418200

[13] J. Ehret, A. Bönsch, P. Nossol, C. A. Ermert, C. Mohanathasan, S. J.
Schlittmeier, J. Fels, and T. W. Kuhlen. Who’s next? Integrating Non-
Verbal Turn-Taking Cues for Embodied Conversational Agents. In
ACM International Conference on Intelligent Virtual Agents (IVA ’23),
2023. doi: 10.1145/3570945.3607312

[14] J. Ehret, A. Bönsch, I. S. Schiller, C. Breuer, L. Aspöck, J. Fels,
S. J. Schlittmeier, and T. W. Kuhlen. Audiovisual Coherence: Is
Embodiment of Background Noise Sources a Necessity? In 2024
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts
and Workshops (VRW): ”Workshop on Virtual Humans and Crowds in
Immersive Environments (VHCIE)”, 2024.

[15] C. A. Ermert, J. Ehret, T. W. Kuhlen, C. Mohanathasan, S. J.
Schlittmeier, and J. Fels. Audio-Visual Content Mismatches in the
Serial Recall Paradigm. In 49. Jahrestagung für Akustik, Hamburg,
Germany, DAGA 2023, pp. 1429–1430, 2023.

[16] M. Feick, N. Kleer, A. Tang, and A. Krüger. The Virtual Reality
Questionnaire Toolkit. UIST 2020 - Adjunct Publication of the 33rd
Annual ACM Symposium on User Interface Software and Technology,
pp. 68–69, 10 2020. doi: 10.1145/3379350.3416188

[17] A. S. Geller, I. K. Schleifer, P. B. Sederberg, J. Jacobs, and M. J. Ka-
hana. PyEPL: A cross-platform experiment-programming library. Be-
havior Research Methods, 39:950–958, 2007. doi: 10.3758/BF03192990

[18] J. Grübel. The design, experiment, analyse, and reproduce principle
for experimentation in virtual reality. Frontiers in Virtual Reality,
4:1069423, 4 2023. doi: 10.3389/frvir.2023.1069423

[19] J. Grübel, R. Weibel, M. H. Jiang, C. Hölscher, D. A. Hackman, and
V. R. Schinazi. EVE: A framework for experiments in virtual environ-
ments. In Spatial Cognition X - 13th Biennial Conference, KogWis
2016, vol. 10523 LNAI, pp. 159–176. Springer Verlag, 2017. doi: 10.
1007/978-3-319-68189-4 10

[20] T. W. Kuhlen and B. Hentschel. Quo vadis CAVE: Does immersive
visualization still matter? IEEE Computer Graphics and Applications,
34:14–21, 9 2014. doi: 10.1109/MCG.2014.97

[21] R. L. Pedersen, L. Picinali, N. Kajs, and F. Patou. Virtual-Reality-Based
Research in Hearing Science: A Platforming Approach. Journal of
the Audio Engineering Society, 71:374–389, 6 2023. doi: 10.17743/JAES.
2022.0083

[22] J. Peirce, R. Hirst, and M. MacAskill. Building experiments in Psy-
choPy. Sage, 2022.

[23] I. Schuetz, H. Karimpur, and K. Fiehler. vexptoolbox: A software
toolbox for human behavior studies using the Vizard virtual reality



platform. Behavior Research Methods, 55:570–582, 2 2023. doi: 10.
3758/S13428-022-01831-6

[24] K. A. Shapcott, M. Weigand, I. Glukhova, M. N. Havenith, and M. L.
Schölvinck. DomeVR: A setup for experimental control of an immer-
sive dome virtual environment created with Unreal Engine 4. bioRxiv,
2022. doi: 10.1101/2022.04.04.486889

[25] A. Solway, J. F. Miller, and M. J. Kahana. PandaEPL: A library
for programming spatial navigation experiments. Behavior Research
Methods, 45:1293–1312, 12 2013. doi: 10.3758/S13428-013-0322-5

[26] M. J. Starrett, A. S. McAvan, D. J. Huffman, J. D. Stokes, C. T. Kyle,
D. N. Smuda, B. S. Kolarik, J. Laczko, and A. D. Ekstrom. Landmarks:
A solution for spatial navigation and memory experiments in virtual
reality. Behavior Research Methods, 53:1046–1059, 6 2021. doi: 10.
3758/S13428-020-01481-6

[27] A. Steed, L. Izzouzi, K. Brandstätter, S. Friston, B. Congdon, O. Olkko-
nen, D. Giunchi, N. Numan, and D. Swapp. Ubiq-exp: A toolkit to build
and run remote and distributed mixed reality experiments. Frontiers in
Virtual Reality, 3:912078, 10 2022. doi: 10.3389/frvir.2022.912078

[28] K. Tiwari, V. Kyrki, A. Cheung, and N. Yamamoto. DeFINE: Delayed
feedback-based immersive navigation environment for studying goal-
directed human navigation. Behavior Research Methods, 53:2668–
2688, 12 2021. doi: 10.3758/s13428-021-01586-6

[29] M. Vasser, M. Kängsepp, M. Magomedkerimov, K. Kilvits, V. Stafinjak,
T. Kivisik, R. Vicente, and J. Aru. VREX: An open-source toolbox for
creating 3D virtual reality experiments. BMC Psychology, 5:1–8, 2
2017. doi: 10.1186/S40359-017-0173-4

[30] J. Vercelloni, J. Peppinck, E. Santos-Fernandez, M. McBain, G. Heron,
T. Dodgen, E. E. Peterson, and K. Mengersen. Connecting Virtual Real-
ity and Ecology: A New Tool to Run Seamless Immersive Experiments
in R. PeerJ Computer Science, 7:1–14, 6 2021. doi: 10.7717/PEERJ-CS.
544

[31] M. R. Watson, B. Voloh, C. Thomas, A. Hasan, and T. Womelsdorf.
USE: An integrative suite for temporally-precise psychophysical exper-
iments in virtual environments for human, nonhuman, and artificially
intelligent agents. Journal of Neuroscience Methods, 326:108374, 10
2019. doi: 10.1016/j.jneumeth.2019.108374

[32] M. Wölfel, D. Hepperle, C. F. Purps, J. Deuchler, and W. Hettmann.
Entering a new Dimension in Virtual Reality Research: An Overview of
Existing Toolkits, their Features and Challenges. In Proceedings - 2021
International Conference on Cyberworlds, CW 2021, pp. 180–187,
2021. doi: 10.1109/CW52790.2021.00038



A FULL QUESTIONNAIRE STATEMENTS

Nr. Full Statement Left Anchor (1) Right Anchor (5)
Q1 Experience with Unreal Engine (UE) before starting the project: Completely new to UE Very familiar with UE
Q2 Experience with C++ programming before starting the project: Completely new to C++ Expert in C++
Q3 Experience with factorial study design before starting the project: Complete novice Expert in study design
Q4 I found the usage of the study setup actor clear and easy. Strongly Disagree Strongly Agree
Q5 The different randomization and ordering options were clear to me. Strongly Disagree Strongly Agree
Q6 The Wiki helped in finding the information I needed. Strongly Disagree Strongly Agree
Q7 The C++/Blueprint Interfaces provided were sufficient. Strongly Disagree Strongly Agree
Q8 I had to look into the source code frequently to understand what was

going on.
Strongly Disagree Strongly Agree

Q9 I needed a lot of help to develop the study. Strongly Disagree Strongly Agree
Q10 The provided control screen helped conducting the study. Strongly Disagree Strongly Agree
Q11 I felt in full control over the study. Strongly Disagree Strongly Agree
Q12 I felt confident that I could use the provided recovery options to handle

every possible situation.
Strongly Disagree Strongly Agree

Q13 I used the ”Show Conditions” Option regularly. Strongly Disagree Strongly Agree

Table 2: Full Statements and their scale’s anchors used in the questionnaire to evaluate the StudyFramework. Additionally, the System
Usability Scale (SUS), two rankings for most and least helpful features, free feedback fields regarding implementation and execution, as well as
demographics, were part of the questionnaire.


