
VRScenarioBuilder: Free-Hand Immersive Authoring Tool
for Scenario-based Testing of Automated Vehicles

Sevinc Eroglu*

Visual Computing Institute
RWTH Aachen University

Arthur Voigt
Visual Computing Institute
RWTH Aachen University

Benjamin Weyers †

Human-Computer Interaction
University of Trier

Torsten W. Kuhlen‡

Visual Computing Institute
RWTH Aachen University

Figure 1: VRScenarioBuilder tool to author scenarios for testing automated driving features. Left: Block Editor for block-based
assembly of dynamic traffic scenarios. Right: World-in-Miniature interface to navigate the scene, add and select entities (e.g.
vehicle or pedestrian), and define the observer position during scenario playback.

ABSTRACT

Virtual Reality has become an important medium in the automo-
tive industry, providing engineers with a simulated platform to ac-
tively engage with and evaluate realistic driving scenarios for testing
and validating automated vehicles. However, engineers are often
restricted to using 2D desktop-based tools for designing driving
scenarios, which can result in inefficiencies in the development and
testing cycles. To this end, we present VRScenarioBuilder, an im-
mersive authoring tool that enables engineers to create and modify
dynamic driving scenarios directly in VR using free-hand interac-
tions. Our tool features a natural user interface that enables users to
create scenarios by using drag-and-drop building blocks. To evalu-
ate the interface components and interactions, we conducted a user
study with VR experts. Our findings highlight the effectiveness and
potential improvements of our tool. We have further identified future
research directions, such as exploring the spatial arrangement of the
interface components and managing lengthy blocks.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Virtual Reality; Human-centered computing—
Interaction design and evaluation methods—User interface design—
User studies

1 INTRODUCTION

Virtual Reality (VR) has gained increasing interest from the auto-
motive industry, primarily due to its ability to provide simulated
environments where engineers can actively participate and observe
realistic driving scenarios. This enables engineers to test and validate

*e-mail: eroglu@vr.rwth-aachen.de
†e-mail: weyers@uni-trier.de
‡e-mail: kuhlen@vr.rwth-aachen.de

automated vehicles in varying traffic scenarios without endangering
themselves, vehicles, or the surrounding environment. By simulat-
ing environments and replicating real-world driving conditions, VR
provides a controlled space for quick adjustments and improvements
to vehicle systems. This accelerates development and testing cy-
cles, leading to more efficient processes and reduced costs in the
development of automated vehicle technologies.

Engineers often are limited to 2D desktop-based expert tools
to design road networks and traffic scenarios for evaluation VR.
However, even with expertise, it’s inefficient to do a full design
iteration and make intermediate changes, as it requires leaving the
VR environment to apply modifications to the underlying system.
This breaks the immersion and slows down the development and
testing cycle.

A possible solution is to provide immersive authoring tools that
enable users to create and modify virtual environments directly
inside VR. This way, the user can design and evaluate the content
without having to leave the virtual environment. To test automated
vehicles, it is necessary to design road networks and define dynamic
traffic scenarios. While previous works [16, 20] enable users to
create and modify roads in an immersive environment, they do not
provide the ability to author dynamic traffic scenarios.

To address these shortcomings, we present VRScenarioBuilder,
an immersive test environment that enables engineers to efficiently
test and validate automated vehicles in VR. To make interactions
with the system as intuitive and approachable as possible, we have
designed a natural user interface. Our tool enables users to create
and modify dynamic traffic scenarios using free-hand gestures. To
this end, we designed an easy-to-use drag-and-drop interface that is
inspired by block-based visual programming languages. To evaluate
our interface design decisions, we performed a user study with n = 9
VR experts. We gathered qualitative feedback to investigate potential
difficulties and improve the proposed approach in future iterations.
Furthermore, we identify future research directions based on the
feedback and our observations.



2 RELATED WORK

2.1 Virtual Testing of Automated Vehicles

To create testing scenarios for automated driving systems, road net-
works and traffic scenarios need to be defined. Real public data
sources [12, 15, 26], procedural generation [28, 34], learning-based
[13, 21, 33] or user-driven [6, 18, 38] methods are used to address
these needs. User-driven methods offer a customizable approach
that can be adjusted to meet specific needs, allowing for flexibility
in the design process. Once a desired driving scenario has been iden-
tified, the user manually specifies parameters, including coordinates,
trajectories, velocities, and orientations using a domain-specific
language (DSL) such as ASAM OpenSCENARIO [5]. This is an
open XML-based standard describing dynamic content for virtual
test drive simulations, containing the maneuvers of traffic partici-
pants. These scenarios, utilized as input for simulators in testing
automated driving functions, support reusability across tools and
development stages. Thus, engineers commonly use simulators
like CARLA [17], IPG CarMaker [8], Cognata [9], SVL [10], and
DYNA4 [1]. However, these simulators do not enable users to mod-
ify the traffic scenarios interactively while being immersed. Eroglu
et al. [20] have addressed this aspect by providing an immersive
authoring tool that enables engineers to test automated vehicles. In
their work, users can create road networks and traffic scenarios using
free-hand interactions. While they offer features for designing traffic
scenarios, such as adding traffic lights, defining traffic directions,
and adding speed limits, they do not provide the rule-based traffic
scenario definition that we propose in our work.

2.2 Dynamic Content Description in VR

Dynamic content that reacts to other scene objects based on a defined
rule is typically described using programming languages. To create
the content while being immersed, researchers have adapted visual
programming languages (VPL) rather than textual programming to
avoid the inconvenience of using a physical keyboard in VR [19,25].
VPLs use visual elements such as graphical symbols and diagrams
to represent and manipulate code structures. They enable users
to create programs without the need for extensive programming
skills or knowledge. Among these, one of the immersive VPL
expands upon block-based programming paradigm [24, 31, 36, 39],
which enables users to compose a program by positioning blocks
that represent basic commands and control flow structures. Both
Cubely [36] and VR-ocks [31] are primarily used for educational
purposes to introduce novice programmers to basic programming
concepts. Jin et al. [24] proposed VWorld, which enables children
to learn programming using blocks in VR. Similar to our approach,
the authors utilize a WIM to manipulate the virtual environment.
To teach students “Internet-of-Things” knowledge through block-
based visual programming, Zhu et al. proposed LearnIoTVR [39].
Furthermore, Hedlund et al. [23] propose BlocklyVR, investigating
the potential and constraints of using block-based programming in
VR environments, where users engage in programming activities by
physically moving, in contrast to the conventional desktop-based
2D Blockly [7] situated context. Both BlocklyVR and LearnIoTVR
use the interface design of Blockly, which allows for horizontal and
vertical nesting of blocks.

Our interface design, presented for creating dynamic traffic sce-
narios, inspired a block-based VLP approach similar to the present
works. However, we further simplified the programming process
by using pre-defined blocks of conditions and actions rather than
basic building blocks. While our design enables users to stack the
blocks vertically, the additional parameter adjustments within these
blocks are made through button presses, sliders, and demonstration
via direct interaction, such as defining a trajectory for the entity to
follow.

3 VRSCENARIOBUILDER

We developed our system based on the following requirements that
are defined by control engineering experts of an automotive com-
pany.

R1 The system should enable users to create, modify, and fine-tune
dynamic traffic scenarios that include driver actions such as
changing a lane, overtaking or following a defined trajectory.

R2 The system should enable users to observe and analyze scenar-
ios from different perspectives for comprehensive testing.

R3 The system should facilitate offline editing and compatibility
with widely used standards like OpenSCENARIO.

To address each requirement, we designed an immersive author-
ing system with two main user interface components: the World-in-
Miniature (Section 3.1) and the Block Editor (Section 3.2). In the
following, we present our system in more detail.

3.1 World-in-Miniature
To enable users to efficiently interact with virtual objects within
arm’s reach, we utilize a World-in-Miniature (WIM) interface [32],
a miniaturized replica of the virtual environment. Upon opening the
right hand with the palm facing upward, the WIM interface becomes
visible in front of the user. To enable users to interact effectively
with the virtual environment from various perspectives, the WIM
can be freely repositioned with a single hand and rotated around
the vertical axis with both hands. To change the scene inside of
the WIM, we enable users to employ a swiping gesture on the floor,
similar to scrolling on a smartphone.

The first step in designing a traffic scenario (R1) is to add entities
to the virtual environment. Currently, our system provides two
different entities: Vehicle and Pedestrian. The miniature copies of
these entities are located in their respective container on the WIM
interface (See Figure 1 - Right). These objects can be added to the
scene by grabbing and placing them in the WIM. After removing
a copy from its container, a new copy of that entity appears in its
place.

The position and orientation of scene objects can be manipulated
by moving them inside the WIM. To reduce the authoring time, the
position and the orientation of vehicles are automatically adjusted to
fit the nearest lane on release. Pedestrians, on the other hand, can be
positioned and oriented arbitrarily.

To address R2, the WIM interface incorporates a camera that
enables users to define their initial position and viewing direction
for testing the scenario. During authoring phase, the camera can be
moved by grabbing it and rotated by manipulating the lens. Via the
preview screen of the camera, users can determine their perspective
within the scenario. The camera can also be used to follow a specific
entity within the simulation. This can be accomplished by dragging
the camera onto the entity of interest and releasing it. The camera
will then “snap” to the entity and become smaller, indicating to the
user that it is now following that entity during the simulation.

3.2 Block Editor
In order to design an easy-to-use interface for authoring dynamic
traffic scenarios, we needed to simplify the complex hierarchy of
elements in OpenSCENARIO, which can require 258 lines of code
to define a simple lane-cutting scenario [27]. To achieve this simplic-
ity, we drew inspiration from the block-based visual programming
paradigm. In this approach, code snippets are represented by blocks
that can be dragged together to create programs. This provides a
simple way for program creation that doesn’t demand extensive pro-
gramming skills or knowledge. To this end, our Block Editor user
interface component enables users to author dynamic traffic scenar-
ios by dragging and dropping building blocks, namely condition and
action blocks (R1).



Figure 2: This figure shows how each block changes in appearance
once it has been added to the programming area. This change in
appearance causes the blocks to have different parameters to specify
the condition/action. These parameters are highlighted black for the
white Condition Blocks and white for the black Action Blocks.

The Block Editor can be brought into the virtual environment by
turning the left hand with the palm facing upwards. To enable users
to comfortably interact with the interface, it can further be reposi-
tioned freely by grabbing its handle, drawn as a sphere containing
3D arrows. Additionally, while positioning, the interface rotates in a
way that directly faces the user, to ensure optimal visibility and avoid
additional interactions that could potentially cause arm fatigue [22].

3.2.1 Assembling Blocks
The main UI elements of the Block Editor component are Condition
Blocks and Action Blocks. Condition Blocks are similar to “if”
statements in programming languages, and Action Blocks serving as
function calls within these “if” statements. Once a condition is met,
the corresponding actions are executed. Currently, Condition Blocks
can only exist on the first level and Action Blocks on the second.
This setup allows for multiple dependent action blocks per condition
block. However, each condition block is evaluated independently of
others on the first level during playback.

The Block Editor currently offers three types of Condition Blocks
and three types of Action Blocks. The functionalities of these are
designed to create dynamic scenarios such as “Cut-In” [2], “Double
Lane Changer” [3], and “Overtaker” [4], as required by the system
control engineers (R1). To define these scenarios, we have designed
the following blocks:
Condition Blocks:

• Distance is triggered when the distance between two selected
entities becomes greater or smaller than a defined threshold in
meters.

• Time After Action is triggered when the defined time has passed
after the execution of a specified action.

• Time After Start is triggered when the defined time has passed
after the simulation started.

Action Blocks:

• Change Speed sets the desired speed of a selected vehicle to a
specified one.

• Change Lane causes a selected vehicle to change its lane to a
selected (right or left) lane.

• Follow Trajectory make a chosen entity, a vehicle or a pedes-
trian, to follow a defined trajectory.

To create a scenario, the blocks need to be positioned in input
area, denoted by a white dashed rectangle in the upper-middle part of
the interface (See Figure 1 - Left). Upon adding a block, all exiting
blocks move upwards to maintain space in the input area for the next

Figure 3: Depiction of VRScenarioBuilder’s Slider. The user
clicked on the “5 sec” button of the Time After Start condition block.
The parameter can be set by moving the slider with the index finger.
The two buttons with “-” and “+” can be used for fine adjustment.

condition or action block. Simultaneously, its appearance expands
to display adjustable parameters required for further specification
(See Figure 2). To remove a block from the scenario, the block can
simply be grabbed and thrown away. The block will fall and be
deleted.

3.2.2 Parameter Specification
To enable users to define parameters, our system offers 3D buttons
and sliders. When a button on the expanded block is pressed, the
system performs a corresponding action based on the parameter type.
For numerical parameters, users can define the value by interacting
with a slider. For a precise definition of the values, +/- buttons can
be employed (See Figure 3). Additionally, we provide toggles for
binary parameters that are used in the Distance condition (“>” or
“<”) and the Change Lane action blocks (“left lane” or “right lane”).

The Change Lane and the Chance Speed blocks require the user
to specify which vehicle should execute the action. To perform
this selection of a vehicle, the WIM interface is employed. After
pressing the “choose car” button, the Block Editor disappears and
the WIM appears in front of the user, and the vehicle can be selected
by touching it directly with the index finger. The Distance Condition
and Follow Trajectory blocks have a similar parameter, “entity”,
allowing the selection of a pedestrian or a vehicle. The Time After
Action block incorporates a parameter defining which action triggers
this condition. To set this parameter, the user needs to press the
button and then select the desired action.

Lastly, as a parameter of Follow Trajectory, a trajectory can be
defined. For this reason, we enable users to draw a path by directly
grabbing the object (a vehicle or a pedestrian) and moving it in the
WIM (See Figure 4). The resulting path is projected onto the road
and is visualized in white to provide visual feedback.

3.2.3 Playing Scenarios
After a scenario has been created by assembling condition and action
blocks, simulation can be initiated by interacting with the play button
on the Block Editor interface. Upon play, the position of the user will
be set based on the miniature camera. The position of the user will
be updated to follow an entity if the camera is attached to that entity.
During the simulation mode, the Scenario Builder is adapted to offer
new input capabilities to pause, resume, and stop the scenario. For
clear observation of the simulation steps, annotations are provided
to indicate ongoing actions (See Figure 5). Their transformation
dynamically updates based on the user’s position and they disappear
after some seconds.

3.2.4 Dynamic Editing of Scenarios
Our system further enables users to dynamically modify scenarios
while the simulation is running (R1). It’s a crucial feature for eval-



Figure 4: Creating a trajectory in the WIM: The user is moving the
red car, creating a trajectory to overtake the blue car.

Figure 5: Playback of a scenario: The Block Editor displays two
buttons to pause or stop the simulation. Over the simulated vehicle,
an annotation indicates the red car is changing to the left lane.

uating how individual entity behaviors affect scenario outcomes at
specific points in the simulation. To achieve this, the simulation
first needs to be paused and then desired action blocks can be added
to the input area of the Block Editor. Once the modifications have
been made, the user can then resume the simulation and observe the
effects of the changes.

3.2.5 Saving and Loading of Scenarios
Another crucial feature requested by engineers is the ability to mod-
ify the scenarios offline and share them for use in other testing
environments (R3). For this reason, we enable users to save sce-
narios in the XML format of OpenSCENARIO. It is commonly
employed in the automotive industry and compatible with various
testing environments such as CarMaker [8] or CARLA [17]. A cre-
ated scenario can be saved by selecting the save button on the Block
Editor (see Figure 1 - Left). The scenario file will be stored under
the project folder. It can be modified offline and, e.g., loaded into a
desktop-based testing environment. The modified file can then be
loaded into our tool to continue the workflow in VR.

4 USER STUDY

To gather initial feedback on the interface components and free-hand
interactions of VRScenarioBuilder, we conducted a user study with
VR experts. This study serves as an initial guide for refining the
interface concept, enhancing usability, and implementing additional
features.

Figure 6: Top: The scenario depiction shown to users to recreate
in the study: The red car begins to drive at 15km/h, if the distance
to the pedestrian is less than 10m, the car stops and the pedestrian
crosses the street. Bottom: The depiction of correctly assembled
blocks and set parameters for the scenario described above.

4.1 Apparatus
The study was conducted in a seated position at our lab. We used
the HTC Vive HMD with two Lighthouse 1.0 base stations. In order
to track the position and orientation of the user‘s fingers and hands,
we employed the Leap Motion Controller (LMC) [11], mounted
onto the VR headset. The experimental platform was developed in
Unity 2018.3.14f1 and ran on a 3.50GHz Intel Xeon E5-1650 with
NVIDIA GeForce GTX 1080 GPU, operating Windows 10.

4.2 Procedure
The study procedure is composed of several sequential steps. First,
participants signed a consent form and filled out a pre-study de-
mographic questionnaire. Then, an example OpenSCENARIO file
“Overtaker.xml” and the VRScenarioBuilder workflow were shown
and briefly explained.

Once equipped with the HMD, participants were instructed to
think aloud and freely comment on the system. After getting familiar
with the system, the participants were instructed to load the example
file using the Block Editor and play this scenario.

In the next step, the participants had to create a new scenario
based on the image that is shown in VR (See Figure 6 - Top). Sev-
eral features were utilized in this task, including block assembly,
parameter configuration, as well as creating a trajectory for the
pedestrian. Upon successful creation (See Figure 6 - Bottom), the
participants were instructed to play this scenario.

Once the pedestrian had crossed the street, the participants were
instructed to use the dynamic editing feature to make the car continue
driving. This involved pausing the scenario, adding a Change Speed
action, setting the “choose car” parameter, and resuming playback.

After completing the tasks, participants put the HMD off and com-
pleted the System Usability Scale (SUS) [14], a custom 5-point Lik-
ert scale questionnaire (See Figure 7). Furthermore, semi-structured



interviews were conducted with each participant to gather feedback
on system difficulties and suggestions for improvement. The entire
procedure took approximately 45 min.

4.3 Participants
9 persons participated in the study. They were between the ages
of 22 and 33 (7 male and 2 female). All participants had normal
or corrected vision. None of them suffered from color blindness,
and all were right-handed. Additionally, all participants reported
having experience with VR and 3D user interfaces regularly, with 5
reporting previous experience with free-hand interaction in VR. All
participants also reported having regular programming experience.

4.4 Results and Discussion
Overall, we mainly received positive feedback from VR experts.
They were able to solve the tasks without major problems and rated
the system’s usability as good, giving it an average SUS score of
75. Furthermore, they found the interaction with the system using
free-hand gestures was not physically exhausting Q1 and functioned
well Q10. The further results of the custom 5-point Likert scale
questionnaire can be seen in Figure 7. The experts further provided
valuable feedback on existing and suggested additional features,
which we present and discuss in the following.

4.4.1 Feedback on Existing Features

Concerning loading of scenarios, several participants commented
positively on the scenario representation using blocks as being easy
to understand. Upon playing the loaded scenario, one participant
stated that the annotations could sometimes cover important elements
of the scenario. To address this, we plan to implement an automated
annotation positioning approach to prevent interference with impor-
tant elements of the scenario, similar to previous work [29, 35].

Regarding scenario creation, users expressed confidence in using
the system and appreciated the block assembly concept for its in-
tuitiveness. These positive responses are further supported by the
ratings of Q2 and Q7 in the custom questionnaire (See Figure 7).
Two participants, however, experienced issues when attempting to
insert a block into the programming area. The block would some-
times fall down accidentally when released too early. To solve this
issue, we plan to provide improved visual feedback to indicate when
it is safe to release the block. In addition, we also plan to implement
an undo/redo feature to enable users to correct accidental actions.

In terms of parameter specification, several participants gave pos-
itive feedback on the ease of using the UI elements of the Block
Editor to set numerical parameters. However, one participant stated
that the transition from the Block Editor and the WIM was some-
times confusing when selecting a “entity” parameter. To improve
the user experience, we plan to evaluate different approaches for
transitioning between the interfaces.

4.4.2 Ideas for Additional Features

We received valuable insights for improving the functionality of
VRScenarioBuilder. One notable suggestion is to enable the com-
bination of multiple conditions using a logical “and” by nesting
consecutive Condition Blocks directly below one another. Another
suggestion from two participants was to have a list of scenario enti-
ties that can be selected if the WIM becomes crowded. Furthermore,
regarding the playback of scenarios, one participant suggested a
feature to “scroll in time” during playback to enable users to revisit
specific moments in a scenario. As part of future design iterations,
we will carefully consider these suggestions.

5 LESSONS LEARNED & FUTURE RESEARCH DIRECTIONS

Several key lessons have emerged from our observations and the
feedback that we gathered.

Figure 7: Histogram of answers to a custom 5-point Likert scale
questionnaire.

• Extension to Multimodal Cues: We have observed that our sys-
tem is lacking some important visual cues within the user interface
such as indicating where to safely add blocks. In addition to vi-
sual cues, carefully selected auditory cues can also be used to
further enhance the user experience [30]. In order to improve user
understanding, reduce confusion, and simplify interaction with
the system, we plan to incorporate auditory and more prominent
visual cues in future iterations.

• Investigating the Layout of the Interfaces: When specifying
entities as parameters, the WIM interface appears and the Block
Editor disappears until an entity has been selected. This design
decision was made to avoid potential clutter in the user’s view.
However, based on feedback we have received, the transition
between the Block Editor and the WIM interface can be confusing.
This can potentially lead to accidental selection of the wrong
entity, especially when the WIM is crowded. Simultaneously
displaying the Block Editor and the WIM interfaces may introduce
challenges related to visual clutter and optimal positioning within
the interaction range of the user. To tackle this issue, our research
will focus on investigating the following research question:

RQ1: How can the spatial positioning and the visibility of user
interface elements be designed to minimize visual clutter and
improve the user experience during scenario creation in VR?

To address the question in future work, we plan to incorporate
additional quantitative measures besides task completion time and
cognitive load. For instance, applying the dual-task paradigm [37]
would enable us to measure cognitive load during the use of the
user interface. This will help us gain a deeper understanding
of which elements of the user interface affect cognitive load in
particular. In this way, it could be possible to examine in more
depth how spatial design affects the user experience while creating
immersive scenarios.

• Lengthy Scenario Code Blocks: We observed that as the number
of blocks increases in the Block Editor interface, there could be a
possible challenge in terms of navigation, readability, and efficient
management. To handle this complexity, we propose the following
solutions:

Implementing a hierarchical structure that organises blocks into
categories could simplify the navigation process. This way users



can collapse or expand sections, allowing for a more focused and
efficient exploration of scenario blocks. Additionally, search and
filter functionalities can be added to the interface to enable users
to quickly locate specific blocks. This feature may allow users to
manage extensive lists more easily by providing targeted access
based on naming or functional attributes. Offering users the ability
to create custom groupings within the interface could be another
solution. This would allow users to organise scenario blocks
based on their preferences and workflow, which could result in an
experience that is intuitive and easy to use. Building upon these
proposed solutions, we have developed the following research
question:

RQ2: How can an interface be designed to manage and navigate
an extensive list of scenario code blocks efficiently in VR?

6 CONCLUSION

We presented VRScenarioBuilder as a novel solution to address the
limitations imposed by 2D desktop-based tools in designing and
testing dynamic driving scenarios for automated vehicles in VR. Our
tool enables users to create dynamic traffic scenarios and modify
them at run-time based on free-hand gestures. By performing design
and evaluation steps within the application without a break of im-
mersion, it offers an efficient workflow for testing automated driving
features. We designed an intuitive drag-and-drop scenario builder
interface, drawing inspiration from block-based visual programming
languages for user-friendly interaction.

To evaluate our interface design choices, we conducted a user
study with VR experts. Furthermore, we gathered qualitative feed-
back to find potential challenges and refine our approach in future
iterations. The results show the intuitiveness of design decisions
for creating dynamic scenarios with free-hand interactions, with the
participants rating the system’s usability as good, thereby validating
the effectiveness of our approach. In addition, we identified future
research directions based on feedback and our observations. These
aim to enhance the interface and further contribute to the improve-
ment of immersive scenario authoring for testing automated driving
features in VR.

ACKNOWLEDGMENTS

The authors express their gratitude to Alain Chevalier and Frederic
Stefan for their insightful discussions that greatly contributed to
defining the requirements of our tool.

REFERENCES

[1] Adas testing with virtual test drives — vector. https://www.vector.
com/int/en/products/products-a-z/software/dyna4/

adas-testing-with-virtual-test-drives/. (Accessed on
01/14/2024).

[2] Asam openscenario: User guide. https://releases.asam.

net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_

User-Guide_V1-0-0.html#_cut_in. (Accessed on 11/29/2023).
[3] Asam openscenario: User guide. https://releases.asam.

net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_

User-Guide_V1-0-0.html#_double_lane_changer. (Accessed
on 11/29/2023).

[4] Asam openscenario: User guide. https://releases.asam.

net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_

User-Guide_V1-0-0.html#_overtaker. (Accessed on
11/29/2023).

[5] Asam openscenario® dsl. https://www.asam.net/standards/
detail/openscenario-dsl/. (Accessed on 01/11/2024).

[6] asam-oss/osc-alks-scenarios: Alks scenario interpretation in opensce-
nario. https://github.com/asam-oss/OSC-ALKS-scenarios.
(Accessed on 01/12/2024).

[7] Blockly — google for developers. https://developers.google.
com/blockly. (Accessed on 01/13/2024).

[8] Carmaker — ipg automotive. https://ipg-automotive.com/

en/products-solutions/software/carmaker/. (Accessed on
01/11/2024).

[9] Cognata — autonomous and adas vehicles simulation software. https:
//www.cognata.com/. (Accessed on 01/11/2024).

[10] Svl simulator by lg - autonomous and robotics real-time sensor sim-
ulation, lidar, camera simulation for ros1, ros2, autoware, baidu
apollo. perception, planning, localization, sil and hil simulation, open
source and free. https://www.svlsimulator.com/. (Accessed on
01/11/2024).

[11] Ultraleap. https://www.ultraleap.com/leap-motion-controller-whats-
included/. (Accessed on 11/30/2023).

[12] C. L. Azevedo, N. M. Deshmukh, B. Marimuthu, S. Oh, K. Marczuk,
H. Soh, K. Basak, T. Toledo, L.-S. Peh, and M. E. Ben-Akiva. Sim-
mobility short-term: An integrated microscopic mobility simulator.
Transportation Research Record, 2622(1):13–23, 2017.

[13] L. Bergamini, Y. Ye, O. Scheel, L. Chen, C. Hu, L. Del Pero, B. Osiński,
H. Grimmett, and P. Ondruska. Simnet: Learning reactive self-driving
simulations from real-world observations. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 5119–5125. IEEE,
2021.

[14] J. Brooke. SUS -A quick and dirty usability scale Usability and context.
Usability evaluation in industry, 1996.

[15] P. Cai, Y. Lee, Y. Luo, and D. Hsu. Summit: A simulator for urban driv-
ing in massive mixed traffic. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4023–4029. IEEE, 2020.

[16] S. Côté and O. Beaulieu. VR Road and Construction Site Safety
Conceptual Modeling Based on Hand Gestures. Frontiers in Robotics
and AI, 6:15, 2019.

[17] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla:
An open urban driving simulator. In Conference on robot learning, pp.
1–16. PMLR, 2017.

[18] D. drive Contributors. DI-drive: OpenDILab decision intelligence
platform for autonomous driving simulation. https://github.com/
opendilab/DI-drive, 2021.

[19] J. Dudley, H. Benko, D. Wigdor, and P. O. Kristensson. Performance
envelopes of virtual keyboard text input strategies in virtual reality. In
2019 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 289–300. IEEE, 2019.

[20] S. Eroglu, F. Stefan, A. Chevalier, D. Roettger, D. Zielasko, T. W.
Kuhlen, and B. Weyers. Design and evaluation of a free-hand vr-based
authoring environment for automated vehicle testing. In 2021 IEEE
Virtual Reality and 3D User Interfaces (VR), pp. 1–10. IEEE, 2021.

[21] L. Feng, Q. Li, Z. Peng, S. Tan, and B. Zhou. Trafficgen: Learning to
generate diverse and realistic traffic scenarios. In 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3567–3575.
IEEE, 2023.

[22] J. Hansberger, C. Peng, S. Mathis, V. Areyur Shanthakumar,
S. Meacham, L. Cao, and V. Blakely. Dispelling the gorilla arm syn-
drome: The viability of prolonged gesture interactions. pp. 505–520,
07 2017. doi: 10.1007/978-3-319-57987-0 41

[23] M. Hedlund, A. Jonsson, C. Bogdan, G. Meixner, E. Ekblom Bak, and
A. Matviienko. Blocklyvr: Exploring block-based programming in
virtual reality. In Proceedings of the 22nd International Conference on
Mobile and Ubiquitous Multimedia, pp. 257–269, 2023.

[24] Q. Jin, Y. Liu, Y. Yuan, L. Yarosh, and E. S. Rosenberg. Vworld: an
immersive vr system for learning programming. In Proceedings of the
2020 ACM Interaction Design and Children Conference: Extended
Abstracts, pp. 235–240, 2020.

[25] P. Knierim, V. Schwind, A. M. Feit, F. Nieuwenhuizen, and N. Henze.
Physical keyboards in virtual reality: Analysis of typing performance
and effects of avatar hands. In Proceedings of the 2018 CHI conference
on human factors in computing systems, pp. 1–9, 2018.

[26] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner. Mi-
croscopic traffic simulation using sumo. In 2018 21st international
conference on intelligent transportation systems (ITSC), pp. 2575–2582.
IEEE, 2018.

[27] G. Lou, Y. Deng, X. Zheng, M. Zhang, and T. Zhang. Testing of
autonomous driving systems: where are we and where should we go?

https://www.vector.com/int/en/products/products-a-z/software/dyna4/adas-testing-with-virtual-test-drives/
https://www.vector.com/int/en/products/products-a-z/software/dyna4/adas-testing-with-virtual-test-drives/
https://www.vector.com/int/en/products/products-a-z/software/dyna4/adas-testing-with-virtual-test-drives/
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_cut_in
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_cut_in
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_cut_in
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_double_lane_changer
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_double_lane_changer
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_double_lane_changer
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_overtaker
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_overtaker
https://releases.asam.net/OpenSCENARIO/1.0.0/ASAM_OpenSCENARIO_BS-1-2_User-Guide_V1-0-0.html#_overtaker
https://www.asam.net/standards/detail/openscenario-dsl/
https://www.asam.net/standards/detail/openscenario-dsl/
https://github.com/asam-oss/OSC-ALKS-scenarios
https://developers.google.com/blockly
https://developers.google.com/blockly
https://ipg-automotive.com/en/products-solutions/software/carmaker/
https://ipg-automotive.com/en/products-solutions/software/carmaker/
https://www.cognata.com/
https://www.cognata.com/
https://www.svlsimulator.com/
https://github.com/opendilab/DI-drive
https://github.com/opendilab/DI-drive


In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 31–43, 2022.

[28] I. Paranjape, A. Jawad, Y. Xu, A. Song, and J. Whitehead. A modu-
lar architecture for procedural generation of towns, intersections and
scenarios for testing autonomous vehicles. In 2020 IEEE Intelligent
Vehicles Symposium (IV), pp. 162–168. IEEE, 2020.

[29] S. Pick, B. Hentschel, I. Tedjo-Palczynski, M. Wolter, and T. W. Kuhlen.
Automated positioning of annotations in immersive virtual environ-
ments. In EGVE/EuroVR/VEC, pp. 1–8, 2010.

[30] R. Schlünsen, O. Ariza, and F. Steinicke. A vr study on freehand vs.
widgets for 3d manipulation tasks. In Proceedings of Mensch Und
Computer 2019, pp. 223–233. 2019.

[31] R. J. Segura, F. J. del Pino, C. J. Ogáyar, and A. J. Rueda. VR-OCKS:
A virtual reality game for learning the basic concepts of programming.
Computer Applications in Engineering Education, 2020. doi: 10.1002/
cae.22172

[32] R. Stoakley, M. J. Conway, and R. Pausch. Virtual reality on a WIM:
interactive worlds in miniature. In Conference on Human Factors in
Computing Systems - Proceedings, 1995.

[33] Q. Sun, X. Huang, B. C. Williams, and H. Zhao. Intersim: Interactive
traffic simulation via explicit relation modeling. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
11416–11423. IEEE, 2022.

[34] S. Tan, K. Wong, S. Wang, S. Manivasagam, M. Ren, and R. Urtasun.
Scenegen: Learning to generate realistic traffic scenes. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 892–901, 2021.

[35] M. Tatzgern, D. Kalkofen, R. Grasset, and D. Schmalstieg. Hedgehog
labeling: View management techniques for external labels in 3d space.
In 2014 IEEE Virtual Reality (VR), pp. 27–32. IEEE, 2014.

[36] J. Vincur, M. Konopka, J. Tvarozek, M. Hoang, and P. Navrat. Cubely:
Virtual reality block-based programming environment. In Proceedings
of the ACM Symposium on Virtual Reality Software and Technology,
VRST, 2017. doi: 10.1145/3139131.3141785

[37] C. D. Wickens. Processing resources in attention, dual task perfor-
mance, and workload assessment. 1981.

[38] Y. Zhou, Y. Sun, Y. Tang, Y. Chen, J. Sun, C. M. Poskitt, Y. Liu, and
Z. Yang. Specification-based autonomous driving system testing. IEEE
Transactions on Software Engineering, 2023.

[39] Z. Zhu, Z. Liu, Y. Zhang, L. Zhu, J. Huang, A. M. Villanueva, X. Qian,
K. Peppler, and K. Ramani. Learniotvr: An end-to-end virtual reality
environment providing authentic learning experiences for internet of
things. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, pp. 1–17, 2023.


	Introduction
	Related Work
	Virtual Testing of Automated Vehicles
	Dynamic Content Description in VR

	VRScenarioBuilder
	World-in-Miniature
	Block Editor
	Assembling Blocks
	Parameter Specification
	Playing Scenarios
	Dynamic Editing of Scenarios
	Saving and Loading of Scenarios


	User Study
	Apparatus
	Procedure
	Participants
	Results and Discussion
	Feedback on Existing Features
	Ideas for Additional Features


	Lessons Learned & Future Research Directions
	Conclusion

