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Abstract: A common problem in Virtual Reality is latency. Especially for head tracking,

latency can lead to a lower immersion. Prediction can be used to reduce the e�ect of latency.

However, for good results the prediction process has to be reliably fast and accurate. Human

motion is not homogeneous and humans often tend to change the way they move. Prediction

models can be designed for these special motion types. To combine the special models, a

multiple model approach is presented. It constantly evaluates the quality of the di�erent

specialized motion prediction and adjusts the set of motion models. We propose two variants,

and compare them to a reference prediction algorithm.
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1 Introduction

One of the key aspects of Virtual Reality (VR) is the reproduction of highly immersive

virtual scenes. For this, it is not only important that the output is realistic, but also that it

adopts to the user's interactions. For example, when moving the head, the displayed images

have to be adjusted to maintain a correct perspective. One common problem of interactive

environments is latency, i.e. the delay between input and the reaction in the output.

For a user-centered projection, a high latency can cause motion sickness or make the user

move unnaturally [SMK98]. When rendering audio using binaural synthesis using dynamic

cross-talk cancellation [LSVA07], the precise position of the listeners ears is required. If the

user moves, the �lter computations assume a wrong ear position due to latency, resulting in

a loss of quality of the sound reproduction.

There are several di�erent causes of latency, for example the update frequency of the

tracking system, network delay, rendering speed, or display refresh rate. It is often not

possible to easily reduce the latency, e.g. because better hardware is not available or too

expensive. Thus, latency can only be reduced to a certain level. For example, the CAVE at

RWTH Aachen University has a visual end-to-end latency of 70 to 100ms.

When the possibilities of a direct reduction of latency are exceeded, prediction can help

to reduce the impact of latency. Prediction uses information from past measures to estimate
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Figure 1: Layout of the virtual scene (left) and a recorded head trajectory(right).

a future state. These future states can then, for example, be used to render images or sound

based on the expected head position. However, especially for long prediction times, the

prediction results may be inexact, possibly causing even larger deviations or sudden jumps

(jitter). Thus, it is important to �nd reliable and accurate prediction methods and models.

Several methods for predicting human motion in VR have been proposed. Many of these

strive for an abstract model that can predict just about any motion. However, when moving

around a virtual scene, e.g. as in �gure 1, humans typically perform di�erent actions. These

can often be categorized as a set of di�erent motions types, e.g. walking straight ahead,

looking around, or kneeling down. For these speci�c motion types, optimized prediction

models outperforming general approaches might be found. However, since humans tend

to change their motion over time, the prediction has to be adaptive by adjusting tracking

parameters or switching motion models.

In this paper, we will present methods for multiple model adaptive estimation for optical

head-tracking in VR. For this, we will present specialized position prediction models for

di�erent movement types using Kalman Filters. These are combined into two di�erent

multiple model prediction methods. The remainder of this paper is structured as follows.

We will �rst discuss related work in section 2, followed by a description of basic prediction

methods in section 2.1. The specialized motion models and the multiple model approaches

are presented in section 3. Section 4 will present results of the proposed methods compared

to a reference adaptive Double Exponential Smoothing (aDES) implementation, followed by

a conclusion and outlook (section 5).

2 Related Work

Work on prediction algorithms, also in the context of VR, already has a long history. Es-

pecially because of head-mounted displays, a lot of work focusses on prediction of head

orientation using inert sensors [vRM05].

Probably the most common method for prediction is the Kalman Filter [Kal60], which has



been used for several applications in VR (see [Wel09] for a history). Other approaches make

use of Particle Filters [ADMR03]. Another popular class of methods use Double Exponential

Smoothing (DES), as e.g. presented in [LaV03]. This algorithm is simple compared to

Kalman Filters (KFs), and thus can be computed a lot faster, but still provides high accuracy.

Due to its simplicity and computational e�ciency, DES gained attention, e.g. for jitter

reduction [CK13] or locomotion prediction [NK13].

Several prediction algorithms for orientation have been systematically evaluated [vRM05].

The results show that the Extended KF, Unscented KF and Particle Filter based prediction

methods all deliver a similar accuracy for orientation predictions of less than 80ms. Another

work compares the use of quaternions vs. delta-quaternions for orientation prediction using

a KF [HM09]. The authors conclude that delta-quaternions can enhance the prediction

quality.

While general prediction is rather common in VR, adaptive prediction approaches are

less frequent. An adaptive variant of the DES has been proposed [Ass09], which dynamically

adjusts the parameters of the prediction to match the current motion. Alternatively, one

can use several di�erent specialized models and adaptively choose the best (or a combination

of the best) by a method called a Multiple Models Adaptive Estimator (MMAE) [KM97].

Chai et al. [CHVN99] have presented an implementation of an adaptive estimator, which

performs slightly better than the best non-adaptive estimator, but at higher computational

costs. It is stressed that for a general system with no a-priori information it is not possible

to know the best-matching non-adaptive model in advance.

The main challenge when using MMAE for prediction of human motion is the determina-

tion and combination of suitable specialized models. In this paper, two approaches to solve

this problem will be presented.

2.1 Basic Prediction Techniques

This section brie�y introduces prediction concepts using non-adaptive prediction methods.

While a Double Exponential Smoothing (DES) implementation is used as reference, Kalman

Filters (KFs) will be used to model speci�c motion models in section 3.

Exponential Smoothing Exponential smoothing algorithms have been developed pri-

marily to smooth noisy data series. They are also a viable prediction method, especially in

economic forecasts [Gar85]. Double Exponential Smoothing (DES) is a further improved ex-

ponential smoothing scheme and is proposed as an alternative to Kalman Filtering [LaV03].

In contrast to single exponential smoothing it models two separate trends: a current and a

general one.

The performance of the DES depends on a good choice of the smoothing factor. While

this factor is often kept constant, it can also be adapted interactively [Ass09].

This adaptive algorithm will be used as reference implementation with which we will

compare our results.



Kalman Filter In this section, we will brie�y explain the fundamentals of Kalman Filters.

For a more detailed discussion, see [BH12].

The KF is a �ltering technique used to calculate estimates of unknown variables based

on a series of observed measures. For each measure, a prediction step and a correction

step are performed. The calculated estimate often tends to be more accurate than a single

observation, as noise is �ltered out. A main assumption for KFs is that there is an underlying

linear dynamics model and all error terms and measurements have a Gaussian distribution.

Thus KFs are often used to �lter noise from observations. Human motion has been found to

be well linearizable, and thus KFs can be applied for prediction of human motion [KB06].

The Kalman Filter assumes a random process which can be estimated at discrete time-

steps as xk+1 = φk+1
k · xk + wk, where xi is the state vector at time-step i, φk+1

k is the state

transition matrix transforming the state xk into xk+1, and wk is the process noise covariance.

The random process can be observed at discrete points in time by zk = Hk · xk + vk where

Hk denotes the measurement correction matrix and vk is the measurement noise covariance.

φk+1
k , Hk, wk and vk must be given and can be determined from the dynamics model and

from experiments.

In the �rst step from k to k + 1 the a posteriori state x+k at time tk is transformed into

the a priori state x−k+1. The second step is the correction step which corrects the a priori

state at time k using the measurement from time k. In the prediction step from k to k + 1

the a priori state x−k+1 is calculated under the assumption of a noise-free dynamics model:

x−k = Φk
k−1 ·x−k−1. The correction step calculates the a posteriori state from the a priori state

using the most recent observation.

For further prediction, the N -step prediction technique can be used. The state transi-

tion matrix Φk+N
k is speci�c for each model. The predicted state vector is determined by

x− (k +N | k) = Φk+N
k · x (k | k).

3 Prediction Methods

This section will �rst introduce speci�c motion models for human motion. These will then

be combined to form multiple model approaches. Many parameters of the presented models

and the covariance matrices of the Kalman �lters depend on the tracking system as well

as other system-speci�c properties (e.g. limited walking speed in a CAVE). They cannot

necessarily be applied to predictive tracking with a di�erent environment and hardware.

Thus, we will omit speci�c values, and only present the general approach of the models and

the estimators. The presented models are designed for single axis position prediction. For

further implementation details, see [Jop12].

3.1 Dynamics Models and Kalman Filter Parameters

The KF requires a dynamics model which should be chosen according to the desired state

transition. For performance reasons, the state vector should be kept small. A position-



velocity-acceleration dynamics model has been chosen [KB06]. We recorded example trajec-

tories from users exploring a virtual scene (see section 4), and evaluated these to determine

di�erent types of motions and to design individual, specialized motion models. The more

important models that have been developed are: KF-based motion models for fast, slow

and robust linear motion, parabolic motion, constant position, constant velocity change and

exponential and linear change-to-velocity motion have been developed. Here, we will only

describe the linear and the exponential change motion models, since these proved to be

versatile and most suited for the multiple model estimation approach.

For multiple model approaches, all models receive the same input tracking states. While

KFs inherently smooth the input, this is not always su�cient because velocity and acceler-

ation have to be calculated numerically from the input positions, pronouncing errors. Thus,

we decided to use additional smoothing in the form of a Kalman Smoother [SVL07].

Linear Motion Model Linear motion models describe a movement process during which

velocity stays almost constant. It has been observed that a subdivision into fast and slow

linear motion provides better results than just using a single class. Observations have shown

that when moving quickly, the normal linear motion model slightly underestimates the actual

position. Similarly, for slow linear movement it predicts a position that is too far ahead.

Thus, the slow and fast motion models correct for these over- and underestimation by not

using the actual measured velocity, but an adjusted one.

Exponential Change-to-Velocity Model Accelerating human motion would classically

be modelled using a KF with a constant acceleration, which corresponds to the linear change-

to-velocity motion model. However, using an acceleration derived from the input positions

introduces a high jitter or requires strong smoothing that would introduce a delay. Addi-

tionally, our recordings showed that the acceleration does not stay linear during the process.

Thus, we propose the use of an exponential change-to-velocity motion model, which accel-

erates from one velocity to another in a given time. It exponentially interpolates between the

initial velocity and a target velocity at each step. This model is general but speci�c because

it can easily be adapted to speci�c cases by changing the parameters target velocity and

target interval, i.e. the time after which the target velocity is reached. While this provides

�exibility, it is important to choose the correct parameters to match the current motion

model. This parameter determination will be performed by the MMAE.

3.2 Adaptive Estimation Using Multiple Models

The previously presented motion prediction models have been designed for speci�c cases of

human motion. While tracking a human's head, the type of motion will frequently change,

e.g. when one accelerates, turns around, or shifts his torso to look around a stationary object.

In these cases, it is important to select the correct motion model at the correct time, which

is a di�cult problem. For this, a Multiple Models Adaptive Estimator (MMAE) is used

to select or combine the matching speci�c models out of all possible models. The multiple



model approach can use several instances of a given model (e.g. with di�erent parameters).

These instances are called �lters.

The MMAE is based on the theoretic assumption that there is one true model and thus

for each state a perfect estimate can be calculated [Mar06]. However, this approach is not

feasible for interactive prediction because all possible �lters and �lter selection histories have

to be examined. Instead, a more practical solution has been used by Chai et al. [CHVN99].

The selection process chooses one �lter after every k-th frame, based on the �lters' error over

these k frames. This approach always uses the result of a single �lter, thus discontinuities

arise when a new �lter is selected. Furthermore, the window length introduces a delay during

which the estimator cannot react to changes.

In our case, several �lters run simultaneously, and new �lters are created or pruned

at runtime. From these �lters, we compute the predicted position as a weighted sum of

each �lter's result x̂(tk+N |tk) =
∑

Filter i

ωi(tk) · x̂i(tk+N |tk), where ωi(tk) is a normalized error

criterion. Our tests showed that the most suitable criterion is the inverse absolute error of

the most current measurement and the �lter's corresponding prediction.

3.2.1 Multiple Models Adaptive Estimator

In our approach, all �lters contribute to the �nal prediction based on their current error.

However, the measure of the current error only describes a momentarily error measure.

Thus, a �lter that coincidently yields a good match, but generally shows a wrong trend,

would gain too much in�uence. While this can be mitigated by using a windowed error

measure [CHVN99], this introduces the already mentioned problems. Instead, we decided

to use a two-level method. For combining models, the current error representing short-term

changes is used. Additionally, �lters are dynamically created and removed according to the

general trend of the trajectory. This ensures that only �lters matching the current trend, i.e.

the medium-term development of the user's movement, are regarded for the weighted sum.

For this purpose, methods are required to determine which active �lters should be pruned

and which new �lters should be created. To determine if a �lter should be deleted, error

thresholds are checked. If a �lter shows a high error, or a medium error over multiple frames,

it is removed from the active set. For pruning, this simple approach was su�cient, but for

creating new �lters, a more complex heuristic is required. New �lters are created whenever

the current error exceeds a low error threshold. While it would be possible to create new

�lters at each time-step, this would introduce a large number of very similar �lters, and

would also increase the computational complexity.

To create new �lters, a set of �lters and their parameters have to be determined based on

the current trajectory. To achieve this, some �lter parameters are determined based on the

current movement, while others are sampled over a meaningful interval. For example, for

the exponential change-to-velocity model, the target velocity is sampled around the current

velocity. Three target intervals were found to be su�cient to cover most cases: 8, 12, and

18 frames (i.e. 133, 200, and 300ms). Filters are created for all models listed in section 3.1.



Due to the large number of models and parameter combinations, a lot of �lters are created

which are valid at the current time-step, but do not match the general movement trend. To

overcome this problem, all newly created �lters are initialised for a point in the past (which

has been chosen as 6 samples for a 4 samples prediction). Thus, the �lters have a history

allowing an immediate initialisation and evaluation at the current time to check their error.

If a �lter's prediction of these past measures diverges too much, it is immediately deleted.

This reduces the number of actually used �lters to a reasonable amount.

The error criteria used for pruning are not single thresholds, but always check for short-

term high thresholds and for medium-scale increases of the error above a lower threshold.

The values of the threshold are adjustable and depend on the used hardware as well as the

prediction interval.

By combining the dynamic control of the �lter set and the weighted sum, it is possible

to check both the short-term and the medium-term error. This achieves better results than

using just a single option. To conclude, choosing a �lter creation heuristic according to

these criteria allows an adaptive position prediction using a multiple model approach. Non-

matching �lters get pruned soon enough, and only �lters matching the current situation are

created.

3.2.2 Dual Model Adaptive Estimator

From observations of the MMAE, we noticed that despite the dynamic creation and pruning

of �lters, it often reacted too promptly to small changes in motion. Thus often a curve is

predicted, when the actual movement only showed a small deviation from the linear case.

However, if one would react too late, the predictor could miss the start of the curve, and

would then cause larger errors. Thus, it is di�cult to trade the delay with which the MMAE

reacts to changes against possibly induced errors.

Another observation is that most of the time, human motion is mostly linear, with only

short periods of acceleration. Furthermore, in critical areas such as the apex of a turn,

humans typically move rather slow, so that the error induced by latency is lower than for

fast linear movement.

These observations motivated the design of the Dual Model Adaptive Estimator (DMAE),

a multiple model approach with only two di�erent �lters: the fast and slow linear motion

models. Depending on the current velocity either the fast or slow linear motion �lter is

chosen. This simpli�ed �lter selection and reduced �lter count reduces the computational

complexity. It is also easier to implement, and fewer parameters have to be matched to the

hardware.

By using only the linear motion models, the dominant linear movement periods are well

predicted, while in curved regions the apex is typically overshot, and small details are lost.

Due to the mentioned observations, this trade-o� seems reasonable.



4 Evaluation

To evaluate the methods presented in section 3, we performed tests on actual tracking of

users exploring a virtual scene. For this, we used two main measures for the quality:

Mean Absolute Error (MAE) and jitter. Jitter is measured as the sum of direction changes

in velocity, normalized by the observed changes of velocity from measurements. A jitter

value close to one expresses that the prediction does not su�er from more jitter than the

original tracking signal. A measure larger than one indicates more �uctuations, while a

measure smaller than one indicates a smoother � although not necessarily more accurate �

prediction. The error is compared to an error that would occur with no prediction. Here,

the error is induced only by latency, which is assumed to be the prediction interval of four

samples.

The scene and the position samples used as test input for the prediction are shown in

�gure 1. Tasks in this scene included looking at posters, moving around the room as well as

taking a closer look at a statue. The tracking input is recorded at a rate of 60Hz and the

prediction interval is four frames, about 66.6ms, over a duration of approximately 170s.

The input signals for the x- and z-axis show similar characteristics. Rather long sections

feature uniform motion only rarely disrupted by changes in motion. Sections of a constant

position are seldom. The y-axis characteristics are slightly di�erent. Large sections with

near-constant height and minor head bobbing of less than 5mm are interrupted by few

stronger vertical movements, e.g. when bending down.

4.1 Specialised Motion Models

The trajectory section used to evaluate the specialised models are chosen from an appropriate

linear section of the trajectory (see �gure 2 (left)). Table 1 lists the results in comparison

to the adaptive Double Exponential Smoothing (aDES) algorithm and no prediction. It can

be seen that the aDES signi�cantly reduces the error, but increases jitter. The specialized

model, as expected, shows the lowest error and also has a jitter below one, indicating a

smoother signal.

For a curved case (�gure 2 (right)), the aDES overshoots the apex signi�cantly, and also

linear case MAE [mm] median [mm] 0.9-quantile [mm] jitter

no prediction 12.439 13.084 14.919 1.0

linear model 0.880 0.903 1.302 0.802

aDES 1.843 1.933 3.078 5.747

curved case MAE [mm] median [mm] 0.9-quantile [mm] jitter

no prediction 5.444 4.589 11.506 1.0

exp growth model 0.761 0.547 1.678 0.576

aDES 2.203 1.189 5.422 2.487

Table 1: MAE, median and 0.9-quantile for a linear and curved scenario.



shows high jitter. The specialized exponential change-to-velocity model shows a much lower

error and jitter. Notably, the apex is not missed, and predicted positions are smooth.

Figure 2: On the left, the prediction results for the linear motion model is shown in com-

parison to aDES and no prediction. The curved test case used for the exponential growth

motion model �lter is shown on the right. The prediction interval is 66.6ms.

These two examples show that specialized models excel their designed motion categories,

and outperform general approaches. Of course, this only works for the designed cases - for

other movement types, the special models fail. Thus the multiple model approaches combine

these special model for the prediction of general movement.

4.2 Adaptive Estimator Results

The 3D position prediction is gained from a combination of separate position predictions per

axis. Table 2 shows the error measures over the whole 170 seconds trajectory.

The two multiple model adaptive estimation approaches, MMAE and DMAE, both re-

duce MAE and jitter compared to the reference aDES implementation. The DMAE approach

also shows a de�nite reduction of the MAE, while the MMAE shows only minor improve-

ment of the MAE. The MMAE often shows more details around apexes, but often assumes

curves too quickly. Figure 3 (left) shows two segments from the trajectory and the prediction

results from our algorithms. At 0.2s, the MMAE overestimates the slight increase in velocity

and thus spawns another model in response. Because this error can only be recognized some

steps later, the predictions from 0.25s to 0.3 are o�. This can also be noticed in �gure 3

(right), where jitter originates from this problem (0.1s to 0.4s). The DMAE captures fewer

small details, but performs globally better.

4.3 Performance Results

Three MMAE instances for motion prediction and one quaternion aDES instance for orien-

tation prediction use on average 0.73ms for one prediction step (AMD FX-8120, MSVC 10).

In contrast the DMAEs consumes an average of 0.17ms per prediction. This shows that the

gain in accuracy of the DMAE is not obtained at the expense of computation time.



Figure 3: Prediction results for a prediction interval of 66.6ms. (Left) shows the error-prone

reaction of the MMAE to velocity changes. (Right) shows occasional overshooting at curves.

5 Conclusion

In this paper, we have proposed new methods for adaptive prediction of the tracked human

head for real-time scenarios. By examining motion patterns, we identi�ed several specialized

prediction models that describe di�erent types of human motion. While these specialized

models are highly accurate for their designed motion types, they cannot be globally used

because the type of motion frequently changes. For this, we proposed two multiple model

adaptive estimation approaches that use a combination of models and choose the �nal output

based on the current movement type. One of the models combines many models and variants,

and interactively creates and deletes �lters, for which we proposed suitable heuristics. The

other one uses only two models which proofed to be especially well suited.

We evaluated our results based on recorded movement trajectories and compared them to

a reference adaptive Double Exponential Smoothing prediction algorithm. The results show

that both models outperformed our reference implementation. Jitter was reduced for both

multiple model approaches, and the DMAE also showed lower positional errors. On the one

hand, this is caused by the possible ambiguity of trajectories preventing the determination

of the correct model. For example, an emerging curved trajectory could be either the start

of a continuing curve or the return to a linear movement. Thus, the MMAE has to consider

multiple, currently plausible models instead of a single one. Using a weighted average reduces

the impact of models not matching the actual future trajectory, but is still in�uenced by

extremal models. On the other hand, the DMAE only chooses between two models. This

results in a loss of small detail or delayed reaction to changes, but does not overreact to

MAE [mm] median [mm] 0.9-quantile [mm] jitter

no prediction 14.515 12.735 30.464 1.0

aDES 2.999 2.453 5.917 2.814

MMAE 2.806 2.338 5.255 1.909

DMAE 2.539 2.126 4.822 1.496

Table 2: MAE, median and 0.9-quantile for the prediction process of the 3D position pre-

diction for a prediction interval of 66.6ms.



potential changes, thus reducing the error. In our opinion, the DMAE provides a better

trade-o� between detail and accuracy.

For future work, several improvements can be motivated. The �lter selection heuristic

is a central element for position prediction. When designing it, we focused on movement

in the x-z-plane, because most movement takes place there. However, using a specialized

MMAE for the y-axis could further increase the accuracy, e.g. by modelling head bobbing.

Finally, we only presented methods for position prediction. To predict the orientation of the

user, specialized MMAEs should be developed. Another step could be to not only use the

data from the tracking system, but also global information like room boundaries or other

obstacles. Predicting the orientation quaternion per component using an aDES approach

has been tested and delivers promising results. Choosing a MMAE approach should be

considered.

In the context of the aforementioned cross-talk cancellation, a low positional error is

needed. However, in general the question arises whether users �nd a high positional error or

jitter more problematic, especially for user-centered projections. This would be an interesting

topic for future user studies.
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