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Abstract
The knowledge of which places in a virtual environment are interesting or informative can be used to improve user
interfaces and to create virtual tours. Viewpoint Quality Estimation algorithms approximate this information by
calculating quality scores for viewpoints. However, even though several such algorithms exist and have also been
used, e.g., in virtual tour generation, they have never been comparatively evaluated on virtual scenes.
In this work, we introduce three new Viewpoint Quality Estimation algorithms, and compare them against each
other and six existing metrics, by applying them to two different virtual scenes. Furthermore, we conducted a user
study to obtain a quantitative evaluation of viewpoint quality. The results reveal strengths and limitations of the
metrics on actual scenes, and provide recommendations on which algorithms to use for real applications.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Evaluation/methodologies I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis

1. Introduction

Increasing user efficiency and effectiveness in immersive
virtual environments (IVEs) is an important task that often
involves the automation of otherwise user-controlled param-
eters or degrees of freedom (e.g., travel speed [MMGK09]
or selection assistance [DHKP05]). The success of these
methods usually depends on the accuracy of the system’s
prediction of what a user wants to do, or where she wants to
do it. Of course, both strongly depend on the user’s current
goal which the system does not necessarily know. However,
in many tasks such as scene exploration—which is usually
performed by all users for each new scene—good positions
are often those that help the user get to know the environment
or gain information about its state. As this is usually done
visually, a good position or viewpoint is often one that offers
a large amount of accessible (i.e., visible) information.

To determine good viewpoints, several Viewpoint Quality
Estimation (VQE) algorithms already exist. In most cases,
they target single 3D objects seen from the outside, for
example for determining good initial positions in 3D editing
software or automatically generating 2D previews. These
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algorithms are based on various principles, ranging from
simple silhouette length or visible area [PPB∗05] over
information entropy (e.g., [VFSH03, SPFG05]) to mesh
curvature (e.g., [PKS∗03,LVJ05]) and can also be based on 3D
interest point detection techniques [DCG12]. Overviews and
comparisons of many of these approaches, applied to 3D ob-
jects, can be found in [DCG10], [DCG12] and [SPFG05], nine
algorithms are also introduced in more detail in section 2.1.

Although most of these measures target single 3D objects,
there are several approaches that apply them to scenes, for ex-
ample for automatic scene exploration (e.g., [BDP00, AVF04,
VFSH03, JTP06, SP05]). However, the question remains if
these methods can perform better using different VQE metrics,
or algorithms specifically designed for architectural scenes.
Nevertheless, to the best of our knowledge, there has not been
a comparison, evaluation or discussion of the performance
of different VQE algorithms for 3D scenes, nor any automatic
metric that makes use of scene-specific properties.

Therefore, the main contributions of this work are:

• We introduce three new VQE metrics for scenes (object
area entropy, relative object area entropy and object
uniqueness), two of which are adaptations of existing
techniques, while one is a completely new approach.

c© The Eurographics Association 2015.



S. Freitag et al. / Comparison and Evaluation of Viewpoint Quality Estimation Algorithms

• We compare these, and six existing metrics, applied to two
different architectural scene models (a house and an office
floor) and discuss their strengths and limitations.

• We evaluate the performance of the nine algorithms based
on human ground truth determined in a user study.

• We discuss applications for VQE algorithms for scenes.

The rest of the paper is structured as follows. Section 2 dis-
cusses the main differences between VQE for single 3D objects
and architectural scenes, and introduces the nine algorithms
that are compared in this paper. Section 3 presents the results of
all algorithms on both scenes and a discussion of their strengths
and limitations. The user study we conducted to acquire hu-
man ground truth data is introduced and discussed in section 4.
Section 5 gives a short overview of useful applications of VQE
metrics, before the paper is concluded in section 6 along with
an outlook on future work. Raw data, visualizations and more
information about the scenes can be found in [FWBK15].

2. Viewpoint Quality in Architectural Scenes

The task of VQE in architectural scenes (usually viewed
inside-out) is different from the same task for single 3D objects
(mostly viewed outside-in), even though the same algorithms
can often be applied to both (e.g., [VFSH03]). Maybe the most
prominent distinction arises from self-occlusion problems:
in architectural scenes, most details remain inaccessible if
only outside viewpoints are available, while self-occlusion
is usually less of a problem for single geometric objects. Fur-
thermore, for outside-in viewpoints, most details are usually
found in a small set of view directions, while potentially all
view directions of inside-out viewpoints contain valuable
information. The set of possible viewpoints is also very similar
for different objects viewed outside-in (e.g., a sphere around
the object), while for inside-out views it strongly depends
on the actual scene. Finally, most scenes can be decomposed
into meaningful objects they consist of, which is harder or
impossible to do automatically for most single objects.

2.1. Algorithms

For comparison, we selected six algorithms that have been used
for best automatic viewpoint selection in different publica-
tions and can be—or already have been—used in architectural
scenes. In addition, we introduce three new metrics that are
based on the concept of objects that can be identified in scenes.

Using the number of visible objects as criterion for
viewpoint quality has already been suggested [SP05] and
applied in a simple heuristic [JTP06]. However, objects had to
be defined manually, which is a strong restriction for complex
scenes. In contrast, our three new techniques use the fact that
almost all scenes are divided into geometries or groups anyway
by their modelers, which is also preserved in most file formats.
Even though these groups do not necessarily correspond to
the human perception of an “object”, they are presumably a
good approximation if made by a human. Furthermore, object

grouping in human perception is not unambiguous (e.g., is a
tree an object, or are all its leaves separate objects?). To avoid
considering several (semantic) objects as one, we extract
an object for each lowest-level group, even though humans
would probably often summarize a few of them into a single
object. Note that a more meaningful object extraction may
lead to better results, but is not trivial to compute.

We implemented all algorithms as in their original source
(unless indicated otherwise). For visibility detection of, e.g.,
triangles or vertices, we use the GPU. To avoid direction-
dependent perspective distortion, the scene should be
projected onto a sphere. We simulate this by rendering a cube
map and correcting the pixel areas in subsequent calculations
where necessary (similar to [VFSH03]), except in depth map
stability where this is not easily possible. Unless otherwise
noted, all cube map sides are rendered with a resolution
of 1024× 1024 pixels. The visibility and projected area of
vertices, polygons and objects is determined by using an item
buffer (drawing each entity in a different color) and summing
over the projected area of each color on the projection sphere.

In the following, we give a short overview over all
algorithms that we compared, along with our implementation.

Surface area entropy (also called viewpoint entropy) inter-
prets the projected area of each polygon relative to the total area
projected on the projection sphere with respect to a viewpoint
as a probability [VFSH01,VFSH03]. The entropy of this prob-
ability distribution is calculated as SAE=−∑

N f
i=1

ai
at

log2(
ai
at
),

where N f is the number of faces, ai the projected area of the i-th
polygon, and at =∑

N f
i=1ai the total projected area over the pro-

jection sphere (ignoring the background). It reaches its max-
imum log(N f ) when all polygons get the same projected area.

Relative surface area entropy is similar to surface area
entropy. It is defined as the Kullback-Leibler (KL) dis-
tance [CT12] between the probability distribution of projected
polygon areas and the probability distribution of their actual ar-
eas [SPFG05]. It is calculated as RSAE=∑

N f
i=1

ai
at

log2(
ai
at
/ Ai

AT
),

where Ai is the actual area of polygon i and AT the total
surface area of all polygons. As this is a distance measure, we
use−RSAE as the viewpoint quality.

Ratio of visible area is defined as the ratio between the visible
and the total 3D surface area [PPB∗05] that we approximate
using the GPU by evaluating the depth buffer.

Curvature entropy interprets the curvature of a vertex v as
a probability. It is defined as the entropy over the normalized
probability distribution of the visible vertex curvatures C (v):
CE=−

∫
∞

−∞
C (v)log2C (v)dv [PKS∗03]. We implemented it

by calculating mean curvatures for each vertex using Taubin’s
method [Tau95], and discretizing the curvature values of
visible vertices into a histogram. CE is maximal when all
curvature values appear equally often from a viewpoint.

Mesh saliency is inspired by Itti’s saliency model for
intensities [IKN98]. It applies a center-surround mechanism
to vertex mean curvatures to identify regions that differ from
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their surrounding context, combining several scales for robust
detection of salient features. We implemented mesh saliency as
in [LVJ05], computing mean curvatures C (v) for each vertex v
using Taubin’s method [Tau95], Gaussian-weighted averages
of mean curvatures G(C (v),σ) for a scale σ , and the saliency
map at that scale as S (v,σ)= |G(C (v),σ)−G(C (v),2σ)|.
As in [LVJ05], this is combined for the scales
σ ∈{2ε,3ε,4ε,5ε,6ε} (where ε =0.3% of the diagonal
of the scene’s bounding box) using Itti’s non-linear normal-
ization operator [IKN98] that promotes maps with few peaks
and suppresses those with many similar peaks.

Depth map stability (also called depth-based view stability)
is inspired by the observation that good views on objects are
often geometrically stable, i.e., stable regarding their depth
values [Váz09]. The stability of a viewpoint is calculated as the
mutual information (similarity) of its depth map and those of
all other examined viewpoints. As in [Váz09], we implement
this by using the bzip2 algorithm. As bzip2 compresses blocks
only up to a size of 900KB, the depth map size is restricted to
a maximum of 273×273 pixels (8bit resolution), as 12 views
have to be compressed in the same block for two cube maps
(we used 256×256 pixels). As VQE, the sum of similarities be-
tween a viewpoint and all other viewpoints is used in [Váz09].
However, as this requires O(n2) comparisons for n viewpoints,
we only compared each viewpoint to≈350 viewpoints sam-
pled in a regular grid over the scene at the same eye height.

Object area entropy is our adaptation of surface area
entropy to objects, calculated the same way, only exchanging
polygons for objects. Thus, the projected polygon areas ai and
at are replaced by the projected object areas αi and αt .

Relative object area entropy is our adaptation of relative
surface area entropy to objects. It is calculated identically,
except that projected polygon areas ai and at are replaced by
projected object areas αi and αt , and actual polygon areas Ai
and AT by actual object areas (mesh surface) Ai and AT .

Object uniqueness is a new measure, motivated by the
observation that objects that are visually distinctive and
unique in a given environment also tend to convey more
information to a viewer than objects that occur repeatedly.
For each object i, a uniqueness value U(i)∈(0,1] is computed
that captures its uniqueness regarding geometry and color (as
described below), where a value of 1 indicates a totally unique
object. The uniqueness score US∈ [0,1] of a view is computed
based on the uniqueness of the visible objects, and is maximal
when ∀i : αi ∝ U(i), i.e., when the projected area α(i) of all
objects is proportional to their uniqueness value U(i).

To compare object appearances, descriptors for the
geometries and color distribution of all objects are computed.
The geometry descriptor has to be invariant to translation and
rotation (object placement). Furthermore, we argue that it
should also be invariant to uniform scaling. Although, e.g.,
a giant teacup is probably quite different from a regular-sized
one, in most scenes probably only small size differences occur.
We also decided to use a descriptor invariant to non-uniform

scaling, to have, e.g., books or boxes of different sizes rated as
similar. We chose to use Osada’s D2 descriptor [OFCD01] that
represents the distribution of the distances between two points
on the surface of an object and is calculated by repeatedly
sampling two random points on the surface and determining
their distance. D2 is invariant to rotation, translation, and
uniform scaling. To make it invariant to non-uniform scaling,
we perform a PCA on the object’s geometry to identify its
main axes and then scale it along these axes to unit length. As
color descriptor, we compute a color histogram (including
texture), using the mostly perceptually uniform CIELAB
color space. The final descriptor D(i) of object i is a histogram
with 472 bins: 256 bins for D2 and 216 bins for the color
histogram. It has to be noted, though, that the quality of
the object uniqueness values heavily depends on the object
descriptor used. Other descriptors (such as PFHRGB or
SHOTCOLOR [RC11]) could yield better results [Ale12].

We then compute similarities between the descriptors
of all objects. Let BC(s,t) be the Bhattacharyya coeffi-
cient [Bha43] between two normalized histograms s and t,
i.e., BC(s,t)=∑i

√
si ·ti, that measures the amount of overlap

between s and t. It is easy to interpret, as BC(s,t)=0 when s
and t do not overlap and BC(s,t)=1 when s= t. As only very
similar descriptors indicate actually similar objects, we only
treat objects with a high descriptor similarity as “similar”.
Therefore, let the similarity between two objects i and j be
S(D(i),D( j))=max(0,BC(D(i),D( j))−θ

1−θ
) with θ close to 1 (we

use θ = 0.975). The uniqueness U(i) of an object i is then
defined as the reciprocal of the sums of all similarity values,
i.e., U(i)=(∑ jS(D(i),D( j)))−1. The uniqueness value of an
object i that appears identically m times, and is dissimilar to
all other objects, is thus U(i)= 1

m . A totally unique object
j (not similar to anything) has U( j) = 1. The uniqueness
score US of a view is then calculated as the Bhattacharyya
coefficient between the normalized probability distributions
of the projected areas of all objects and their uniqueness

values, i.e., US=∑i

√
αi
αt
·U(i)

UT
, where UT =∑iU(i).

We expect this score to be higher for viewpoints that are
closer to small, unique objects (that are presumably more
important), and farther away from non-unique (presumably
less interesting) objects as well as large unique objects that
can be comfortably seen at a distance.

3. Algorithm Comparison

Which VQE algorithm provides the best results on a given
scene depends on the application and the desired properties
of the result. For example, when selecting best viewpoints, it
is essential that (global or local) maxima are located correctly,
while it is less important whether very bad viewpoints get a
very low or a medium score. However, when choosing travel
speeds based on viewpoint quality (see section 5), the actual
scores are important everywhere. Therefore, in this section,
we will not argue which algorithm performs best, but discuss
their strengths and limitations in certain circumstances.
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3.1. Scenes

There are various classes of architectural scenes, e.g., indoor,
outdoor and mixed scenes, small rooms or large cathedrals and
highly detailed or sparsely modeled environments, and it can
be expected that different algorithms show their strengths in
different kinds of scenes. For the scope of this work, we focus
on indoor scenes (cf. Figure 1) for the following reasons. First,
outdoor scenes tend to have a wide variation, with natural
as well as man-made structures of various sizes—making it
harder to extrapolate from few scenes—while indoor areas are
usually more similar in structure. Second, in indoor scenes,
realistic viewpoints are usually at eye height, while it can
make sense to fly in outdoor scenes, making the analysis
more application-dependent. To cover a large amount of
variation, we selected two scenes of different types. The first
one is a small, detailed house, with furnished rooms and many
different objects, especially in the kitchen (kitchen appliances
and tools) and the living room (books, DVDs, a laptop, etc.).
The second one is a larger, less-detailed office floor with
similar interiors for many rooms, as well as mostly empty
corridors. It also contains some closed rooms without content,
as is often the case for irrelevant areas to save modeling effort.
In both scenes, the ground is at the same height everywhere.
Furthermore, only little information is contained in textures,
and there are no (semi-)transparent objects, as only one
algorithm under comparison (object uniqueness) respects
color or texture, and no algorithm accounts for transparency.

For both scenes, we calculated the score of all algorithms
with a high spatial resolution, using a regular 0.05m (house)
or 0.10m (office) grid. As we focus on realistic viewpoints
for (virtual) human observers, they were selected at eye height
above the ground, accounting for different eye heights by
averaging the score over heights from 1.45m to 1.80m in
0.05m increments. In total, a little over 1 million viewpoints
were evaluated by each algorithm for each scene.

3.2. Results and Discussion

The results of the algorithm scores for both scenes are visual-
ized in Figure 2 as heat maps. The heat maps show the normal-
ized viewpoint score, using a linear color mapping from black
(min) over red and yellow to white (max) in equal intervals.

Surface area entropy is attracted to highly tessellated areas
and rates views higher when more triangles are visible, and
when triangle sizes are more equally distributed. While highly
tessellated regions often correspond to more information-rich
areas—e.g., regions in the house and in furnished offices are
generally rated higher than empty regions—this often leads
to undesired behavior. For example, viewpoints in the (high-
tessellated) fridge and on both sides of the crinkled shower
curtain (house) or in the potted plants (patio/central office cor-
ridor) receive very high scores, even though the view itself is
probably uninformative to a human observer. When selecting
representative views from high scores, this is most likely un-
wanted behavior. In the office, all furnished rooms receive sim-

Figure 1: Top view of the house and office scenes. High-res
versions and an overview video can be found in [FWBK15].

ilarly high scores. The rooms’ maxima, however, are usually
close to pinboards that hold some tesselated papers and pins.

Relative surface area entropy rates views higher when the
projected size of polygons is proportional to their actual sizes.
In rooms, this often leads to central overview viewpoints
receiving higher scores, as more triangles are visible and
viewed from less inclined angles. However, very large
polygons also get a large weight, leading to high scores in the
center of the empty outside area of the house, and empty rooms
and corridors in the office. The large difference between the
scores of very bad and most other viewpoints is caused by the
fact that the KL distance can get very large for bad viewpoints.

Visible area ratio always rates views in larger rooms higher
(as more surface is visible). Therefore, the empty outside area
in the house and the corridors and large, empty rooms in the
office all get high scores, which is probably undesired. Within
the house, the measure favors central viewpoints in sight of
doorways (where another room can be seen), which might
correspond to informative viewpoints.

Curvature entropy is based on the visibility of vertices and
therefore has less smooth transitions between neighboring
viewpoints than algorithms based on objects or polygons that
can also be partially seen. The method rates empty rooms in
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(a) Surface area entropy (b) Relative surface area entropy (c) Rel. surface area entropy (exp) (d) Visible area ratio

(e) Curvature entropy (f) Curvature entropy (exp) (g) Mesh saliency (h) Depth map stability

(i) Object area entropy (j) Relative object area entropy (k) Rel. object area entropy (exp) (l) Object uniqueness

(m) Surface area entropy (n) Relative surface area entropy (o) Rel. surface area entropy (exp) (p) Visible area ratio

(q) Curvature entropy (r) Curvature entropy (exp) (s) Mesh saliency (t) Depth map stability

(u) Object area entropy (v) Relative object area entropy (w) Rel. object area entropy (exp) (x) Object uniqueness

Figure 2: Algorithm results for the house (a–l) and the office (m–x), visualized as heat maps (normalized to the range [0,1]). The color
mapping is a linear gradient from black for the worst value (0), over red (1/3) and yellow (2/3) to white (1). For some logarithmically
scaled algorithms, heat maps of exponentiated scores (2score) are shown as well for better distinguishability (marked with (exp)).
Raw images and data, including exponentiated versions of surface and object area entropy (a, i, m, u) can be found in [FWBK15].
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the office consistently low due to the low number of visible
vertices (with different curvatures) and gives higher scores
to rooms with content. The high scores are always awarded
to viewpoints above desks, as then more (different) vertices
of highly resolved models can be seen. In the house, the
highest scores are all at clearly unfavorable positions: behind
a kitchen appliance, behind a bedroom curtain, and behind
the clothes hanger in the hall.

Mesh saliency is also based on vertex visibility, and like
curvature entropy gives low scores to viewpoints with low
numbers of visible vertices, therefore successfully excluding
empty rooms and uninformative outside areas. In the house,
the highest-rated point by far is in the living room above the
table, due to the high diversity of details. While this is probably
an informative viewpoint, all other points in the house that
are not directly in its view probably receive too low scores
in comparison. In the office, the evaluation seems mostly
intuitive, with the highest scores by far in the (diverse) boss’
office. However, most other offices and especially the meeting
room and central corridor receive low or very low scores.

Depth map stability gives high scores to viewpoints with
depth profiles similar to that of many other viewpoints. Most
of the highest scores in the house are therefore in rooms
due to the common depth profile of the walls. In the office,
however, the highest scores can all be found in empty rooms
and corridors. In addition, the results are very noisy, and
medium or low scores can often be found close to high scores.

Object area entropy works similar to surface area entropy,
but as it is independent of tessellation, it avoids most of its
drawbacks. For example, viewpoints in the fridge, shower
curtain and potted plants all get low scores. The result in the
office is similar to that of surface area entropy, with generally
lower scores on the (high-poly) stair cordon and the empty
regions, and higher scores in the boss’ office.

Relative object area entropy has a similar result as relative
surface area entropy. However, as it is independent of tessella-
tion, the outside area in front of the house (containing large tri-
angles) gets a much lower score. Although it also contains large
objects (e.g., walls) that receive a high score when projected on
a large area, these can also be seen from within the building (in
addition to many other objects). In the office, however, the re-
sult is worse: as the object surface areas are dominated by huge
objects (all walls are recognized as a single object), the highest
scores are achieved where these get most projection surface,
i.e., in empty rooms. This behavior is similar to relative surface
area entropy for very large polygons, but can be more extreme
when large parts of the scene are recognized as one object.

Object uniqueness reaches reasonable results for the house
scene, with high scores distributed throughout the kitchen,
living room and hall (from which many rooms can be seen).
Viewpoints in enclosed areas (e.g., cupboards) consistently get
very low scores. The best viewpoint is in the doorway between
hall and kitchen, a point from where most of the kitchen, but
also parts of the living room, bedroom and bathroom can be

seen. However, giving similar scores to the empty outside
area as to bedroom and bathroom is probably undesired. This
is likely caused by both rooms containing only few objects
(some of which are repeated), while from the outside area,
the large and unique building blocks of the house (and parts
of the hall) are visible. In the office, the method produces
intuitive results, with very low scores in empty offices and
low scores in empty corridors. The regular offices with very
similar setup—where seeing only one in detail is probably
sufficient—receive medium scores, while the more unique
rooms (seminar room, kitchen, boss’ office) get higher scores.

4. Study

We conducted a user study in a CAVE to quantitatively evaluate
the algorithm results against human ground truth data. It con-
sisted of three parts: an exploration and two evaluation parts
(one for each scene). In the first part, participants were asked
to explore each scene thoroughly for 10 minutes. They were
told that afterwards, they would be asked questions regarding
any information about both scenes, and to prepare for these
as well as they could. As incentive, the three participants who
performed best on the questions received a free lunch or drinks.

In the evaluation parts, participants were teleported to a se-
ries of viewpoints in random order. They rated each one with a
score between 0 and 4 using five buttons on an input device be-
fore they were moved to the next one. They were told to use the
lowest score 0 for the most uninformative viewpoint(s) in the
scene, and the highest score 4 for the most informative one(s).
To include possibly different concepts of informativeness (of
different people) in the rating, participants were not given con-
crete examples of informative viewpoints. To avoid bias, the
viewpoints were chosen by a regular sampling, using a 1m grid
in the house scene, and 3m in the office. Furthermore, in the
house scene, only viewpoints in the house and on the patio were
considered to reduce the total number. In total, participants saw
159 viewpoints in the house and 176 in the office (which we
found to be a high, but manageable number), and took 16 min-
utes to complete each scene on average. They were allowed to
physically turn around 360◦, but not to move away or crouch.

The three study parts were conducted on three different
dates to ensure that participants could remain concentrated
during the (rather repetitive) evaluation. The study took place
in a five-sided CAVE (4 walls + floor), which means that
participants could look around, but not see what was directly
above them. However, as almost no details (except for lamps)
were located above, we assume that this did not influence the
result in a significant way. In total, 22 people (2 female, mean
age 28.2) participated in the study.

4.1. Results

All user evaluations were averaged for each viewpoint
(cf. Figure 3). For each VQE algorithm, we calculated the
score for each viewpoint as the average over scores in a
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Figure 3: Visualizations of user evaluations of viewpoints.
Left: House scene, Right: Office scene.

House
Algorithm BC
Mesh saliency 0.9292
Surface area entropy (exp) 0.9566
Surface area entropy 0.9759
Curvature entropy 0.9764
Depth map stability 0.9789
Object area entropy 0.9814
Curvature entropy (exp) 0.9823
Rel. object area entropy (exp) 0.9831
Rel. object area entropy 0.9831
Object area entropy (exp) 0.9847
Rel. surface area entropy (exp) 0.9848
Object uniqueness 0.9854
Rel. surface area entropy 0.9901
Visible area ratio 0.9939

Office
Algorithm BC
Depth map stability 0.8831
Rel. object area entropy (exp) 0.9011
Rel. object area entropy 0.9187
Mesh saliency 0.9234
Rel. surface area entropy (exp) 0.9273
Surface area entropy (exp) 0.9317
Surface area entropy 0.9425
Visible area ratio 0.9428
Rel. surface area entropy 0.9455
Curvature entropy 0.9550
Curvature entropy (exp) 0.9577
Object area entropy 0.9607
Object area entropy (exp) 0.9644
Object uniqueness 0.9729

Table 1: Bhattacharyya coefficients (BC) of user evaluations
and the algorithm results for both scenes. A higher value corre-
sponds to higher similarity. Results marked with (exp) denote
exponentiated versions of logarithmically scaled measures.

0.30m×0.30m regular grid (0.05m increments) centered
over the position, including heights from 1.45m to 1.80m
in 0.05m increments, to account for small user movements.
The user evaluations were compared to the algorithm results
by calculating Bhattacharyya coefficients for each measure
(see Table 1, other measures produce very similar results).
For logarithmic measures, their exponentiated score was also
included, as the user evaluation was linear in scale.

4.2. Discussion

In the house, most locations in all rooms got high scores, with
the highest scores in the kitchen, where many different objects
can be found. The less-detailed patio was rated lower on aver-
age, but higher where participants could look into the kitchen
or living room. In the office scene, the meeting/seminar rooms
and the offices got similarly high scores, while the corridors
were rated lower and the empty offices very low.

In the algorithm comparison of the house scene, visible
area ratio and relative surface area entropy show the highest
correspondence to user evaluations. However, this is likely
due to the fact that the empty outside area—which got
very high scores, but would probably have been rated low
by humans—was not included in the study. This problem
is avoided by the next best algorithms, object uniqueness
and object area entropy (exp). These also reach the highest
correspondence in the office scene, followed by object area
entropy and curvature entropy (exp). Note that mesh saliency
seems to produce similar scores as object uniqueness on the

office scene at first glance. However, its high ratings are found
almost exclusively in one area, while most of the scene is rated
very low, leading to a bad correspondence to user ratings. In
total, object uniqueness and object area entropy (exp) perform
well on both scenes regarding user ratings.

Note that, as this rating scheme weighs all points equally, the
correspondence results for a certain algorithm depend on the
area occupied by points where it performs well. For example,
in the office scene, many points were in empty rooms, making
it more important for an algorithm to produce similar ratings
as humans there, than it was, e.g., for views from within potted
plants. Although we tried to choose scenes that are represen-
tative for their class, the recommendations from the study are
not necessarily valid for scenes with too differently distributed
content. In these cases, conclusions should be drawn directly
from the algorithm results and the discussion in section 3.2.

5. Applications

The results of accurate VQE techniques on scenes can be
used to support users of IVEs in various ways. Three possible
applications are addressed in this section.

Automated Virtual Tours
Knowing the viewpoint quality of all points in a scene is a
useful aid for calculating automated virtual tours that give
the user an overview of the environment as a replacement
for manual exploration. Based on VQE results, efficient
virtual tours can be computed that cover a certain percentage
of all interesting content, instead of, e.g., just trying to
see all landmarks once [ETT07]. Approaches for this exist
(e.g., [BDP00, AVF04]), but can be improved, for example
by optimizing the path itself to not only connect way points
efficiently, but to be as informative as possible itself, and by
using the most suitable algorithms presented here. Such tours
could make exploration tasks, e.g., in automated architectural
walkthrough scenarios, much more efficient.

Automatic Travel Speed Selection
In scenes with a varying degree of information density,
traveling with a constant speed is often either imprecise
or inefficient. However, giving the user manual control
over the speed is often undesired as well, as it necessitates
the regulation of an additional degree of freedom. This is
especially apparent in multi-scale scenarios, where automated
travel speed control based on distances to the surrounding
scene has been used successfully (e.g., [MMGK09, TR11]).
However, these approaches only produce mixed results in
narrow (e.g., indoor) environments (where users want to speed
up in empty corridors) [TR11] due to the constantly close
proximity of floors and walls. Choosing the travel speed based
on viewpoint quality instead—letting users go faster when
there is actually less to see—can avoid this problem.

Automatic Selection of Representative Views
When a scene has to be presented statically in images, VQE
algorithms can be used to generate representative views
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(e.g., [SPFG05, FSG09]). In this case, the view direction and
field of view should be factored into the viewpoint quality.
Note that this is possible with all algorithms described in
section 2.1 without changing their structure.

6. Conclusion and Future Work

In this paper, we introduced three new VQE algorithms and
compared their performance, together with six existing algo-
rithms, on two different scenes. Furthermore, we conducted a
user study to obtain a quantitative evaluation. The results show
that the decision of which algorithm performs best depends on
the scene and the application. However, our comparison and
user evaluation show that object uniqueness and object area
entropy performed consistently well on both tested scenes.

Nevertheless, the results may not necessarily generalize to
other classes of scenes. Therefore, in future work, we plan to
compare these algorithms on more types of scenes, especially
containing outdoor areas and other classes of rooms (e.g.,
factories, churches or lecture halls). Moreover, motivated by
the promising results of our new, object-based approach on
scenes, we want to further pursue the concept of objects for
VQE algorithms. Among others, we plan to improve object de-
scriptors, include object complexity into the measure, improve
object detection by merging object parts, and try to determine
and favor objects that are relevant to the user’s current task.

Finally, we will use and evaluate the best-performing
algorithms for some of the applications mentioned in section 5,
especially automatic travel speed adjustment in scenes with
strongly varying information density, and the generation of
most informative automatic virtual tours.
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