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Figure 1: Overview of the components of ViSTA Widgets and their interplay. Red arrows show the individual steps of the update cycle with
the numbers indicating their order. Green arrows illustrate communication via signals. Blue arrows illustrate data flow.

Abstract

Virtual Reality (VR) has been an active field of research for sev-
eral decades, with 3D interaction and 3D User Interfaces (UIs) as
important sub-disciplines. However, the development of 3D inter-
action techniques and in particular combining several of them to
construct complex and usable 3D UIs remains challenging, espe-
cially in a VR context. In addition, there is currently only limited
reusable software for implementing such techniques in comparison
to traditional 2D UIs. To overcome this issue, we present ViSTA
Widgets, a software framework for creating 3D UIs for immersive
virtual environments. It extends the ViSTA VR framework by pro-
viding functionality to create multi-device, multi-focus-strategy in-
teraction building blocks and means to easily combine them into
complex 3D UIs. This is realized by introducing a device abstrac-
tion layer along sophisticated focus management and functional-
ity to create novel 3D interaction techniques and 3D widgets. We
present the framework and illustrate its effectiveness with code and
application examples accompanied by performance evaluations.

Keywords: 3D user interfaces, 3D interaction, virtual reality,
multi-device, framework

Concepts: •Human-centered computing → User interface
toolkits; •Computing methodologies → Virtual reality;
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1 Introduction

While VR has recently seen a major boost in popularity due to the
release of various VR consumer devices, it has already been an ac-
tive field of research for several decades. This is particularly true for
3D interaction and 3D UIs. The high degree of freedom in 3D UI
design, compared to a 2D desktop setting, in conjunction with the
wide variety of in- and output devices for 3D interaction, gives rise
to a multitude of novel 3D interaction techniques every year. How-
ever, developing such techniques and especially combining them
into complex and reusable 3D UIs in the context of VR is still a
challenging task. An obvious reason is that the design is challeng-
ing from a Human Computer Interaction (HCI) point of view. On
top, there is only limited software toolkit support for creating new
techniques and integrating them with existing ones.

For an illustration of the challenges in combining techniques, con-
sider the following VR application example. Its scenery contains
objects that can be grabbed using a touch metaphor to move them
around. Additionally, it is possible to select other, distant objects—
e.g., light switches—via a pointing metaphor. Finally, these inter-
actions can be performed independently with either hand.

While this is a rather basic setting, it is representative of many VR
applications and already imposes several design challenges. One
major challenge is object indication or focusing, which is the pro-
cess of determining the object that the user wants to interact with.
This process can be realized using a variety of approaches, the so-
called Focus Strategies. In the above example, users are able to
focus objects by using either a touch- or a pointing-based Focus
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Strategy. For this to properly work, the system must ensure that the
results of both strategies are fused in a consistent and comprehen-
sible manner, e.g., when the user touches an object but also points
at another behind it at the same time. Failing to do so can eas-
ily result in confusing interaction outcomes, e.g., pressing a button
which turns on a light when the intention was to grab an object.
While this might seem an easily-resolvable issue at first, it is com-
pounded by the multitude of Focus Strategies that are available for
VR applications. For example, pointing can, amongst many oth-
ers, be realized via ray-casting or IntenSelect [de Haan and Post
2009]. When choosing the former, the aforementioned conflict can
be resolved by performing a simple distance comparison between
touch and intersection point. If the latter is chosen, however, the
required intersection point is not defined and another solution must
be found. Given the many different Focus Strategies that offer spe-
cial strengths and weaknesses, the described scenario is very likely.
Unfortunately, it is rarely addressed by existing toolkits. The fo-
cus issue becomes even more severe since it is common to combine
similar strategies to cover more scenarios, such as ray-casting plus
IntenSelect for pointing. Another challenge in VR is bi-manual
interaction, which requires all the aforementioned situations to be
well-defined for multiple devices. Here, hand-overs of object ma-
nipulations from one hand to the other are an often-occuring theme.

So even in this simple example, combining different interaction
elements can be challenging. This problem gets even more pro-
nounced when additional and more specialized techniques—like
a world-in-miniature or combinations of 2D and 3D interfaces—
are added. With most existing frameworks, it is possible to some-
how address these challenges when creating new VR applications.
However, this usually involves a lot of state management and of-
ten comes at the cost of limited flexibility and reusability. To help
with such tasks, we developed ViSTA Widgets, a framework for
creating 3D UIs with special focus on VR. It is built on top of
the ViSTA (Virtual Reality in Scientific and Technical Applica-
tions) VR framework [Assenmacher and Kuhlen 2008] and pro-
vides functionality to create multi-device, multi-focus-strategy in-
teraction building blocks and thus allows to easily develop complex
3D UIs. This is realized by adding a further device abstraction layer
that facilitates, among others, bi-manual interaction, advanced fo-
cus management, and a mechanism to combine these elements into
novel 3D interaction techniques and 3D widgets.

To introduce our framework, we first present related work, followed
by a discussion of technical requirements that form the foundation
of its implementation. We then describe elementary components
and their interplay. Next, we demonstrate its use by means of code
and application examples that illustrate the realization of complex
3D UIs. This is followed by a performance evaluation. We con-
clude the paper with a discussion of limitations and future work.

2 Related Work

VR technology has constantly evolved and is used for various ap-
plications. Thus, a lot of different—and often very specialized—
hardware has been developed, which has led to a high number
of 3D input devices with different capabilities. The different in-
put and output devices are usually well abstracted by VR toolkits
(e.g., [Bierbaum et al. 2001], [Kelso et al. 2002], [Assenmacher and
Kuhlen 2008]) or tracking frameworks like Virtual Reality Periph-
eral Network (VRPN) [Taylor II et al. 2001] or OpenTracker [Reit-
mayr and Schmalstieg 2005]. However, the creation of appropriate
3D UIs is still challenging.

For 2D UIs, standard techniques like the Windows, Icons, Menus
and Pointers (WIMP) metaphor have been established and are well
supported by powerful UI toolkits like Qt [The Qt Company 2016],

Swing [Oracle 2016], or Windows Presentation Foundation (WPF)
[Microsoft 2016]. However, while it has been tried to bring clas-
sical 2D UIs to Immersive Virtual Environments (IVEs) [Andu-
jar et al. 2006], they are not capable of using the full potential of
the third dimension. Recently, low-cost commercial consumer VR
Head-mounted Displays (HMDs) have hit the markets which led
to a certain degree of support for the creation of 3D UIs through
commercially available game engines like the Unreal Engine [Epic
Games, Inc. 2016] or Unity [Unity Technologies 2016]. However,
they lack support for projection-based VR systems, while also be-
ing limited in their capabilities regarding hardware abstraction.

One challenge of designing new 3D interaction techniques that is
frequently mentioned in the literature is their high implementation
effort. To reduce the transition effort from conceptual ideas to
a working implementation, several design models have been pro-
posed. One such model is Concept-Oriented Design [Wingrave
and Bowman 2008], which was deduced from examining the de-
sign process and aims at increasing reusability and documentation.
It uses different tiers—from target behavior formulated in natural
language, to implementation code—and is integrated in Chasm,
a toolkit to support the design process by appropriate language
tools for each tier. [Frees 2010] proposes another design model,
which focuses on grouping interaction methods by contexts that are
switched at run-time in order to adopt to the current requirements
(e.g., precise vs. approximate manipulation).

In an early attempt to provide generic 3D interfaces, [Stevens et al.
1994] propose a system to combine multiple geometric primitives
using constraints and relationships. By providing a visual language,
this allows for an easy construction of simple 3D widgets.

A common approach to modeling interaction for VR is the use of
Data Flow Networks (DFNs). One of the first models for design-
ing 3D UIs [Jacob et al. 1999] combines event-based and contin-
uous data-flow-based interaction, as well as a definition language
and visual editor to define the interaction. InTml [Figueroa et al.
2002] uses DFNs to connect semantic components, in order to bet-
ter separate the interaction from device input and graphical output.
[Csisinko and Kaufmann 2010] propose a framework for interaction
design that combines DFNs with state machines to model context
switches and use adapters between the interaction and device input
as well as graphical output. Further research has been conducted on
the usage of distributed DFNs [Assenmacher and Raffin 2009] to fa-
cilitate interaction in distributed Virtual Environments (VEs). Data-
flow-based interaction modeling has continuously been refined and
often provides good abstraction and reusability. Also, frameworks
often provide specialized languages and editors to aid the interac-
tion design. While data-flow-based interaction description is well
suited for high-level interaction, it requires appropriate components
(often called filters) to perform specific interaction tasks, which
have to be developed on a case-by-case basis. Especially when in-
cluding graphical interface elements, this can be challenging.

Another approach to make interaction techniques reusable is the
Virtual Interactive Namespace (VINS) [Valkov et al. 2012b], which
uses named variables in a shared memory space. Since all com-
munication of drivers and graphical output with the interaction is
performed over these named variables, a very compact Application
Programming Interface (API) suffices. While this facilitates an
exchange of the application framework, its limitation to variables
(without callbacks or explicit function calls) severely constrains the
versatility of the actual design process.

The Viargo library [Valkov et al. 2012a] is an event-based interac-
tion toolkit and incorporates device abstraction and a custom scene-
graph for object handling. However, while individual interaction
metaphors can be created and reused, it does not allow for the cre-



ation of fully integrated 3D UIs, since compound techniques and
inter-dependencies are not modeled.

In summary, we observe that a lot of work has been done on enhanc-
ing the design process, providing hardware or toolkit abstraction,
and providing reusability. However, these often focus on the inter-
face between the interaction component and the application logic.
The actual interaction techniques for which they are used are usu-
ally regarded in isolation, while the combination of different simul-
taneous interaction techniques adds additional challenges. Further-
more, current interface libraries often concentrate on higher-level
interaction design, so that low-level aspects like the assembly of in-
terface widgets from basic components (similar to classical 2D UIs)
is rarely supported. In this work, we address these aspects.

3 Requirements

ViSTA Widgets aim at facilitating the creation of advanced interac-
tion concepts for VR applications. As such, their main purpose is
not to provide ready-to-use interaction designs that end users can
immediately benefit from. Rather, they should support develop-
ers in overcoming technical and design-related challenges that are
unique to 3D UI design in a VR context. Therefore, the main tar-
get audience are interaction developers, who create new interaction
building blocks, and application developers, who use these building
blocks to realize application-level interaction concepts.

Compared to the creation of WIMP-style 2D UIs, developers of
VR-based 3D UIs face various additional challenges. These mostly
stem from the large interaction design space that is available for VR
applications. In contrast to 2D UIs, no general design guidelines
exist, which leaves a vast number of design alternatives open for
consideration. This situation is compounded by the large amount of
non-standard input devices that are available for solving interaction
problems. The possibility to use multi-modal or bi-manual designs
further adds to the complexity of creating interaction concepts.

It is the goal of ViSTA Widgets to provide developers with an ap-
proach to handle this kind of complexity. To reach this goal in a
reusable and generic fashion, we derived a set of requirements that
need to be fulfilled in addition to general requirements like a mod-
ular design and platform-independence.

Requirement R1: Provide a proper abstraction mechanism for in-
put devices. To make interaction building blocks ready for arbitrary
and changing device configurations, an appropriate device abstrac-
tion has to be found. It is often unclear which devices are to be
used with a given interaction metaphor. Here, it is of key impor-
tance to anticipate the presence of multiple devices at the same
time. Such aspects can already be partly covered by the device
abstraction that is provided by DFNs, which is, e.g., the case in
ViSTA. They usually provide an abstraction for individual devices
and directly enable the realization of basic interaction metaphors,
like steering. However, interaction techniques that are created via
DFNs are mostly isolated, which often hampers their combination.

Requirement R2: Focus management must be able to handle mul-
tiple devices. It might be possible that certain interaction tasks
can be fulfilled by one of many present interaction devices, such
as grabbing and dragging an object with either hand. To prepare in-
teraction building blocks for these scenarios, they have to be able to
track which devices are currently being used for a given operation.

Requirement R3: Focus management must be able to handle mul-
tiple different focus strategies. Several different techniques exist to
focus objects in 3D space to perform tasks on them, all with their
very own advantages and disadvantages. Consider examples like
ray casting and IntenSelect [de Haan and Post 2009], which both re-

alize the pointing metaphor. While ray casting is well-suited to fo-
cus large geometries, IntenSelect is superior in focusing and track-
ing small objects in crowded scenes. However, the latter comes with
the drawback of only being able to focus point-like objects. Con-
sequently, in several settings, the need to combine different tech-
niques emerges, e.g., in a scenery where a swarm of birds moves
in front of a mountainous landscape and individual birds as well as
single mountains are to be focused. This gets even more complex
if, e.g., proximity selection for pushing virtual buttons or selection
via speech are added. To account for this, the underlying focus
management system needs to be able to evaluate and combine the
results of all involved focus strategies.

4 ViSTA Widgets Architecture

The ViSTA Widgets library is written in C++ and built on top of
the ViSTA VR framework [Assenmacher and Kuhlen 2008]. It has
been iteratively developed, where requirements were incrementally
fulfilled. Eventually, they were employed in several VR applica-
tions. This approach ensured continuous feedback from Widget and
application developers, thus leading to ongoing improvements of
the system. In this section we describe the framework that resulted
from this process, by first giving a short overview, before describing
its individual components in more detail.

4.1 Overview

In ViSTA Widgets, any component a user can interact with is con-
sidered a Widget. Widgets are realized with a Model-View-Adapter
(MVA) concept with exchangeable Views for easy customization.
So-called Interaction Traits can be used by Widgets to use already
implemented interaction techniques. A device abstraction layer
comprises Input Slots in Virtual Devices, which encapsulate Fo-
cus Strategies to interact with Widgets. However, Focus Strategies
are only one part of a Focus Management system that consists of
several components and facilitates the simultaneous usage of mul-
tiple Focus Strategies and Virtual Devices to interact with Widgets.
The communication between the single components is mostly real-
ized via a custom Signals & Slots implementation. For a general
overview, the interplay of these components is illustrated in Figure
1. In the following, we first describe the single components before
we elucidate their interplay in more detail.

4.2 Device Abstraction

VR frameworks like ViSTA often already provide device
abstraction—in ViSTA’s case by using a DFN—that can be con-
figured for different platforms and input devices. However, there is
usually no standard device input routing for interaction techniques.
This makes it hard to develop a consistent API for interaction tech-
niques and limits reusability. To overcome these limitations, we
introduce the concept of Virtual Devices within ViSTA Widgets.

In contrast to the technical abstraction that is provided by DFNs,
Virtual Devices are associated with a semantic. Virtual Devices
provide the possibility to structure logical devices that often repre-
sent real physical input devices, but can also consist of a multitude
or only parts of such. For this, they aggregate so-called Input Slots,
which provide the input history for one datum of a device, e.g., the
6-Degrees-of-Freedom (6-DoF) transformation of a 3D input de-
vice or the button of a mouse. For the realization of interaction
techniques, Virtual Devices and Input Slots are identified via nam-
ing conventions. For instance, a “Primary Pointer” Virtual Device
for selection can be constructed by adding a 6-DoF “Pose” Input
Slot for the device transformation and a Boolean “Select” input slot
to map a button of the physical device.



In addition, Input Slots can be shared by Virtual Devices. This en-
ables applications to make use of different interaction techniques,
e.g., a primary 6-DoF input device with a button for selection and
the same 6-DoF input alongside with another one for two-handed
object manipulation. In such cases, an application developer can
construct two Virtual Devices: first, one with Input Slots for the
6-DoF and Boolean values of the first device’ transformation. Sec-
ond, a Virtual Device with the Input Slots for the 6-DoF values of
both devices’ transformations. Hence, Widgets that need 6-DoF
and Boolean data, e.g., for object selection can make use of the first
Virtual Device, while Widgets that need two 6-DoF inputs, e.g., for
two-handed object manipulation, can use the second Virtual Device.

4.3 Focus Management

3D UIs have more complex needs for focus management than clas-
sical 2D UIs. While in the 2D case, it is usually sufficient to test
whether the 2D coordinates of an input device are inside of the
front-most surface to determine the focused object, a wide variety
of Focus Strategies exists for 3D UIs. In this context, a Focus Strat-
egy is regarded as an algorithm that identifies objects in a scene to
be in focus, based on the current state of an input device. As illus-
trated in the requirements, it is often necessary to combine multiple
Focus Strategies in certain applications. To account for this, ViSTA
Widgets are capable of managing objects in focus with multiple Fo-
cus Strategies and multiple Virtual Devices, thereby always deter-
mining unambiguous focus. The remainder of this section describes
the components needed to achieve this and explains their interplay.

4.3.1 Focus Handles

Every focusable entity in ViSTA Widgets needs to provide at least
one so-called Focus Handle. It provides all necessary information
so that Focus Strategies can evaluate whether a Focus Handle is
a potential candidate of focus. Such information is provided by
so-called Focus Handle Aspects which attach semantics to it. For
instance, a spherical volume is defined via a center position and a
radius. A Focus Handle encapsulates this information by aggre-
gating a Center Focus Handle Aspect and a Radius Focus Handle
Aspect. By not only storing a point and a scalar value with the
Focus Handle, but also including the semantic information, Focus
Strategies can interpret these values according to their functional-
ity. For instance, a Ray Casting Focus Strategy constructs a sphere
for the ray intersection test using the provided center point and the
radius. In contrast, an IntenSelect Focus Strategy only uses the cen-
ter point information to evaluate objects in focus, thereby ignoring
the radius. This enables different Focus Strategies to evaluate focus
using the same Focus Handle as long as it provides the necessary
Focus Handle Aspects. Ambiguities are avoided by restricting Fo-
cus Handles to aggregate each type of Focus Handle Aspect only
once. A Focus Handle Aspect can also contain non-geometric in-
formation, e.g., a string identifier for speech input or an object ID
to realize focus synchronization in distributed applications.

To account for multiple Virtual Devices, Focus Handles store focus
per Virtual Device. This type of information can be used to realize
multi-device interaction metaphors.

While it is mostly desired to only focus one dedicated object, e.g.,
an entry in a menu, situations exist where multiple objects are to be
focused simultaneously. This is, e.g., the case when a whole group
of particles is to be selected in a flow simulation. To this end, we
distinguish two Focus Types for Focus Handles: Passive Focus and
Primary Focus. A Focus Handle with Primary Focus can only be
focused individually by a Virtual Device. Hence, no other Focus
Handle can be focused by the same device at the same time. In

contrast, an arbitrary number of Focus Handles with Passive Focus
can be focused concurrently.

In addition to Focus Types, any currently focused Focus Handle can
request Exclusive Focus. In this case, all other Focus Handles lose
focus so that only the requesting Focus Handle maintains focus un-
til it explicitly releases it. This concept allows for interaction tech-
niques where focus and object manipulation need to be decoupled,
i.e., when an object could get out of focus while being manipulated.
An example for such a behavior is a virtual camera, which is illus-
trated by a factory layout planning application in Section 5.4.

4.3.2 Focus Strategies

Focus Strategies implement techniques to focus objects. More pre-
cisely, they evaluate focus on Focus Handles. Depending on their
particular nature, Focus Strategies require additional information
via Input Slots. The focus evaluation returns a Focus Result List
that contains all Focus Handles that are candidates for focus, or-
dered by a best match scoring. For instance, a Ray Casting Focus
Strategy will return a list of all Focus Handles whose geometric de-
scriptions intersect a device’ pick ray in ascending order by distance
to the input device.

Focus Strategies use so-called Handle Infos to interpret Focus Han-
dle Aspects. This indirection enables application and Widget devel-
opers to use their own Focus Handle Aspects with existing Focus
Strategies. Handle Infos transform the generic description provided
by Focus Handle Aspects to data that can be directly processed by
Focus Strategies. They are provided via a factory, where they can
be registered and queried at run-time. For instance, a Ray Casting
Focus Strategy can query the factory to provide a Handle Info that
transforms the Center and Radius Focus Handle Aspects of a par-
ticular Focus Handle to an intersection point of the respective ray
and sphere.

Particular interaction techniques require information from Focus
Strategies that go beyond a ranking of Focus Handles. This is, e.g.,
the case when the intersection point of a pick ray and the respective
focused object is needed to realize a certain behavior. Focus Strate-
gies can provide this type of information by attaching a so-called
Focus Result Aspect to a processed Focus Handle. Later, such in-
formation can be used by querying respective Result Aspects from
Focus Handles.

For the combined use of multiple Focus Strategies, we introduce so-
called Merger Focus Strategies. In contrast to regular Focus Strate-
gies, they operate on other Focus Strategies as input. They merge
the respective Focus Result Lists of the input Focus Strategies and
return a single, combined Focus Result List as output.

To cover most application scenarios out of the box, ViSTA Widgets
come with a set of predefined Focus Strategies. First, a Ray Cast-
ing Focus Strategy is provided to focus geometric objects. Second,
an IntenSelect Focus Strategy is available, which performs better
in focusing small objects in crowded scenes. Third, a Proximity
Focus Strategy enables to focus objects at close range by touching.
Additionally, an Always-in-focus Strategy grants focus to all Focus
Handles that have a Focus Handle Aspect of a certain, application-
developer-defined type. It is used to realize, e.g., modal dialogs
like menus or to capture focus if no other object is currently fo-
cused, e.g., to trigger actions when a user clicks into an empty area
of the scene. However, such a behavior is only useful when using
multiple Focus Strategies. Therefore, the Priority Merger Focus
Strategy combines the results of multiple Focus Strategies based on
an application-developer-defined priority order.

While a wide variety of use cases are covered with these Focus
Strategies, application developers are encouraged to add own ones,



whenever special behavior is to be realized. This accounts for new
Focus Strategies, but also for special-purpose Merger Strategies.

4.3.3 Focus Dispatcher

After Focus Strategies have evaluated focus, it has to be assigned
to the respective Focus Handles. The responsibility for this lies
at the Focus Dispatcher. One such Focus Dispatcher is present in
each Virtual Device and it operates on one Focus Strategy. If a
combination of Focus Strategies is needed, Merger Focus Strategies
are to be used.

Focus dispatching is triggered via an update from the associated
Virtual Device. As a result, the Focus Dispatcher first triggers the
evaluation of the assigned Focus Strategy. Next, it iterates over
the returned Focus Result List and assigns focus to the first Focus
Handle with Primary Focus. If the list does not contain a Focus
Handle with Primary Focus, it assigns focus to all Focus Handles
with Passive Focus. Finally, it resigns focus from all Focus Handles
that had focus in the previous evaluation, but lost it in the current
one. Widgets and other components can react to focus changes by
observing the respective Signals of Focus Handles.

4.4 Signal System

Communication between components in ViSTA Widgets is primar-
ily realized by a custom Signals and Slots system. It provides func-
tionality similar to boost Signals2 [Gregor and Hess 2016] or Qt
Signals & Slots [The Qt Company 2016]. Slots can be connected to
Signals, which notify events to all connected Slots. Signals include
a Signal Argument when emitted, containing the Signal sender and
optional further information. In most cases, this additional infor-
mation communicates a value change. Slots are methods that must
accept the argument type of the Signal they shall be connected to.

Signal arguments can either be read-only or read-write. The first
case is used when a Slot is meant to trigger a reaction to a partic-
ular event. The second case is used to provide a feedback-channel
for slots to manipulate values in the arguments and thus give the
signal sender the opportunity to react to such a manipulation. This
behavior is, e.g., used to constrain values, which is described later.

4.5 Interaction Traits

While the focus management system and the input data from Vir-
tual Devices already allow for implementing nearly arbitrary inter-
action techniques, it is undesired to re-implement basic interaction
concepts multiple times. To account for this, ViSTA Widgets pro-
vide reusable building blocks for interaction tasks that are regularly
needed, so-called Interaction Traits.

In situations where more than one Focus Handle is used within a
Widget, focus switches from one Focus Handle to another have to
be managed correctly. This also accounts for managing the focus
of several Virtual Devices. To this end, the so-called Focusable
consolidates the focus of several Focus Handles and notifies focus
changes via Signals.

Usually, users should not only be able to focus Widgets, but also
to interact with them. Building upon the Focusable Trait, ViSTA
Widgets provide a Clickable Trait, which notifies button presses
and clicks via Signals when an aggregated Focusable is in focus.
It accounts for multiple Virtual Devices, thus allowing, e.g., the
handover of button presses between them.

Extending these Traits, a Draggable Trait allows for dragging Wid-
gets around by focusing them and holding a button pressed. The
Draggable notifies a new position when dragging occurs. Similar

to the Clickable Trait, it accounts for multiple Virtual Devices and
allows handover from one device to another.

4.6 Fields

The properties of single components in ViSTA Widgets are real-
ized as so-called Fields. Fields encapsulate a data item with a setter
and a getter, each, and can be constrained and observed via Sig-
nals. To this end, every field has two Signals, a Constraint Signal
and a Value Changed Signal. Both Signals emit Value Changed
Arguments. However, the argument of the Value Changed Signal
is read-only while the argument of the Constraint Signal is read-
write and has an additional flag to determine if Slots have actually
constrained the value.

Slots can be attached to the Constraint Signal to constrain the value
of a Field. If a new value does not match the requirements of the
constraining Slot, it can change it in the Value Changed Argument.
All following Constraint Slots see the previously constrained value
as the new value and can further constrain it, if necessary. How-
ever, this could lead to conflicts. To account for this, the Constraint
Signal is raised once more after all Slots have been called in case
its value got constrained. If the value gets constrained again, this
reveals a constraint conflict and a warning is emitted.

ViSTA Widgets come with three fundamental Constraints that can
be attached to any suitable Field. First, a Range Constraint limits
a Field’s value to a certain range. Further, a Minimum Constraint
and a Maximum Constraint prevent the value of the Field from ex-
ceeding a certain lower or upper bound, respectively.

4.7 Widgets

As already mentioned, any component a user can interact with is
considered a Widget. Widgets are realized with the MVA pattern, a
variant of the Model-View-Controller (MVC) pattern. The frame-
work offers base classes for each component, where the adapter
base class is called Widget. It forms the primary contact point to
work with Widgets. While the Model and the Adapter are tightly
coupled, the View is exchangeable for every Widget. This way,
the look of single Widgets can be changed, while adaptions to new
render engines or VR toolkits can also be performed without logic
changes. A View interface must be provided, enabling the adapter,
i.e., the Widget, to set all necessary View properties. Model and
View are independent components that do not rely on each other
or the Adapter. In contrast, the Adapter aggregates both Model
and View and is responsible for keeping the data in both up-to-date
while also being responsible for the interaction logic.

As common with MVA implementations, the basic description of
the Widget is stored in the Model. The Model is realized as a class
containing several publicly accessible Fields. They are used to con-
figure the Widget, but also to react to user input by observing them.

The View is responsible for generating a representation of the Wid-
get that is displayed to the user. Here the term “View” is not to
be taken literally, since a Widget does not necessarily have a visual
representation. It could as well be, e.g., acoustic, haptic, olfactory,
or multi-modal. For Widgets that are designed for input without
direct user feedback, e.g., a Widget intercepting clicks in empty
regions of a scene, it is also valid to not provide a View at all.

By default, every Widget comes with the three Interaction Traits
Focusable, Clickable, and Draggable. These can be enabled or dis-
abled according to functionality needs. To allow for an aggregated
behavior in case of Compound Widgets, which are described below,
only the Signals of the default Traits are exposed by the Widget’s
API. However, custom Traits can be added by Widget developers.



To create a focusable Widget, Focus Handles have to be registered,
which are automatically forwarded to the contained Focusable. In
addition, Focus Handle Aspects need to be provided to describe
how the Widget can obtain focus.

To realize complex Widgets, it is often useful to combine several
basic Widgets. To this end, Widget developers create Compound
Widgets, which are composed of multiple sub-Widgets. For this,
a parent Widget creates Widgets and registers them as child Wid-
gets of its own. This way, the hierarchy of a Widget is hidden from
application developers, exposing its functionality as a single entity.
This also accounts for the focus management in Compound Wid-
gets. A Widget is considered as being in focus whenever any of its
Focus Handles or its child Widgets is in focus.

4.8 Widget Manager

The Widget Manager forms the central component of ViSTA Wid-
gets, since it serves as connecting point to the rest of an application.
In order to use ViSTA Widgets in an application, an instance of the
Widget Manager has to be created. All Virtual Devices and Widgets
must be registered with the Widget Manager. It is then responsible
to trigger updates on the respective components.

4.9 Putting it All Together—The Widget Update Cycle

While the previous sections described the individual components
of the ViSTA Widgets system, this section focuses on the interplay
of the components, i.e., the Widget update cycle. This process is
illustrated in Figure 1.

The update cycle is performed periodically—e.g., once per frame—
by calling the update routine of the Widget Manager. Before per-
forming the update cycle, all Input Slots must be filled with current
data, so that all components are up-to-date. The update cycle con-
sists of three steps. First, focus is evaluated, since all other compo-
nents depend on a consistent focus state of the whole system. Next,
the Interaction Traits are updated to ensure that they are all in a
consistent state, too, when the Widgets get updated in the last step.

To illustrate this in more detail, the Widget Manager first updates
all Virtual Devices. This triggers an update of the Focus Dispatch-
ers, which trigger an evaluation of the associated Focus Strategies.
If Merger Strategies are used, they recursively trigger the evalua-
tion of their respective child Focus Strategies. Finally, the Focus
Dispatchers update all Focus Handles whose states have changed.

In the next step of the update cycle, the Widget Manager triggers
an update of Interaction Traits on all registered Widgets. The Wid-
gets then forward the call to all associated Interaction Traits and
recursively to their child Widgets’ Traits, if present.

In the last step, the Widget Manager triggers update calls on all
Widgets. These are recursively forwarded to child Widgets, if
present. Finally they trigger an update of their Views.

5 Usage Examples

To illustrate how ViSTA Widgets are used in practice, we provide
some examples. First, a code example is given to demonstrate how
to implement an application. Next, we present selected applications
to illustrate the usefulness of different features of ViSTA Widgets.
Afterwards, we illustrate the impact on latency introduced by the
framework with a performance evaluation.

5.1 Code Example

In the following example, we use two 6-DoF input devices with a
ray casting and an IntenSelect Focus Strategy, each. Furthermore, a
Sphere Widget is added to be manipulated by them. To create this
setup, first, a Widget Manager is instantiated and registered at the
system.

manager = new WidgetManager;
handler = new WidgetManagerUpdateHandler(

manager,ViSTA->GetEventManager());

In this example, an update handler for ViSTA is used. However,
with a different toolkit, the application developer simply has to take
care that the Widget Manager’s update method is called periodi-
cally. Next, the Input Slots and Virtual Devices are created:

pose = new InputSlot<TransformMatrix>;
button = new InputSlot<bool>;
device = new VirtualDevice("Pointer");
device->AddInputSlot("Pose",pose);
device->AddInputSlot("Select",button);
manager->AddVirtualDevice(device);

When using ViSTA, the Input Slots are usually filled each frame
via ViSTA’s DFN, where the Input Slots are identified via their re-
spective names. With a different toolkit, the application developer
is responsible for filling the Input Slots with current values before
the Widget Manager’s update method is called. In the next step, the
Focus Strategies are created and connected to the Input Slots and
Virtual Devices:

ray = new RayCastingFocusStrategy;
ray->SetPoseInputSlot(pose);
inten = new IntenSelectFocusStrategy;
inten->SetPoseInputSlot(pose);
merger = new PriorityMergerFocusStrategy;
merger->AddStrategy(ray);
merger->AddStrategy(inten);
device->GetFocusDispatcher()->SetRootStrategy(merger);

After two Virtual Devices, left_device and right_device, have
been created as illustrated above, the application is prepared to use
Widgets, e.g., a Sphere Widget:

sphere = new SphereWidget;
sphere->Init();
sphere->RegisterVirtualDevice(left_device);
sphere->RegisterVirtualDevice(right_device);
manager->AddWidget(sphere);

Now a Sphere Widget exists that can be clicked and dragged by both
devices without further configuration. More complex 3D UIs can
be created by adding further Widgets and reacting to interactions
performed on them. Examples are illustrated in the remainder of
this section.

5.2 Coordinating Interactions in Multi-view Systems

ViSTA Widgets are used for coordinating interactions in VisNEST,
a Coordinated Multiple Views (CMV) system that visualizes neu-
roscientific simulation results [Nowke et al. 2013]. CMV is a cat-
egory of visualization systems that use two or more distinct views
to support the investigation of a single conceptual entity [North and
Shneiderman 1997; Wang Baldonado et al. 2000]. Note that a view
of a CMV systems is not to be confused with a view of the MVA
concept, as it was discussed before.

In VisNEST, views are single applications running on multiple
computers interlinked through a network. To synchronize selection



Figure 2: Two applications are coordinated via a Network Focus
Strategy: a manipulation in the right application updates the posi-
tions of the brain areas in the left application (red circles).

states across all applications, they must be shared via the respec-
tive network interfaces. However, one major challenge arising from
such a design are conflicting input states if users interact with mul-
tiple applications simultaneously. Consider the case when a user
selects a visual entity in an application A and then selects another
one in an application B. A simple yet ineffective solution would be
to use the last selection state received, hence discarding any previ-
ously performed interaction. However, the Widget systems allows
for a more elegant solution: a Network Focus Strategy which re-
ceives selection states from a remotely connected Widget (see Fig-
ure 2). To this end, a Network Focus Handle Aspect has been real-
ized in order to synchronize Widget interaction. A Network Focus
Strategy is fed selection states from remotely connected Widgets
via an asynchronous poll mechanism. To allow for non-conflicting
input state handling, the Network Focus Strategy is attached to a
Virtual Device, which coexists with the standard device for the par-
ticular platform to allow for, e.g., the selection with a flying joystick
in a CAVE and a coupled desktop application. One benefit of this
approach is the non-distracting interaction behavior for users simul-
taneously using the system: a user in a CAVE can see the selection
performed on the desktop application but is not affected in her own
interaction and vice versa. In addition, this approach enables to
prioritize local interactions, e.g., when the remotely coupled Wid-
get currently operates on the same entity but is overruled by local
changes.

5.3 Bottle Blowing

Figure 3: In Bottle Blowing, bottles are realized as Widgets while
each finger of the user’s hands represents a Virtual Device.

[Zielasko et al. 2015] created Bottle Blowing as a virtual music
instrument. Using an IVE, classical blowing of bottles is simulated

to create according sounds. Additionally, more versatile interaction
is possible than in reality, for example by allowing to play several
bottles simultaneously. To play the instrument, the user triggers a
virtual air stream by blowing into a microphone. This stream is then
redirected along her arms and through her fingers, which allows to
intone virtual bottles by pointing at them (see Figure 3).

Zielasko et al. created this multi-modal application by combining
interaction building blocks of ViSTA Widgets. To this end, every
bottle is instantiated as Widget using predefined standard compo-
nents. While the View represents a geometrical model of a bottle, a
Focus Handle with a Center and a Radius Focus Handle Aspect is
used for the focus management. The Focus Handle marks the open-
ing of a bottle, as this is the point that should be aimed at with the
airstream. The behavior of the bottle Widget is defined using the
available Interaction Traits, i.e., Clickable and Focusable. The bot-
tle is highlighted by glowing when focused (see Figure 3). When
getting clicked, the Widget raises a Signal, which triggers the appli-
cation to play the corresponding tone. Additionally, bottle Widgets
can be put into a draggable mode, which allows to reposition them.

With this setup the bottles are already playable with every point-
and-click device, e.g., a mouse in a desktop setting or a flying
joystick in an IVE. However, in [Zielasko et al. 2015] bottles are
played by hand gestures and blowing into a microphone. For this,
the output of hand tracking and a blow detection algorithm are fed
into the Widget system using the concept of Virtual Devices: first,
eight 6-DoF and one Boolean Input Slots are created and marked
as “Pose” and “Select” slots, respectively. The former each receive
the pose of the respective fingers, which are tracked by a Leap Mo-
tion. The latter is set based on the blow detection running in the
background. A Virtual Device is created for each finger, which
combines the respective pose Input Slot with the shared select In-
put Slot. Finally, an IntenSelect Focus Strategy is instantiated for
each Virtual Device. As result, the user can use all fingers at the
same time to play various sets of bottles simultaneously.

In summary, a novel multi-modal, multi-hand interaction was cre-
ated by combining predefined interaction building blocks of the
Widget system. This use case shows that ViSTA Widgets can be
used to quickly develop IVEs that go beyond the classic notion of
Widget-based interaction. Although, the application itself is rather
playful, the created Virtual Devices could be directly reused in more
serious applications, e.g., for system control [Zielasko et al. 2015],
showing furthermore the benefits of the modular design of the pro-
posed Widget system.

5.4 VR-based Factory Layout Planning

[Pick et al. 2014] presented flapAssist, a VR-based factory layout
planning application that allows planners to review and modify ma-
chine layouts during virtual walkthroughs. Planners are supported
by interactive visualizations that provide comprehensible access to
relevant planning-related data, such as material flow costs. An an-
notation system further allows to record comments and decisions
using various interaction techniques [Pick et al. 2016]. Users can
input texts, take virtual photos, create sketches, or produce voice
recordings to form different kinds of annotations. This interaction
has been realized using ViSTA Widgets. The application mainly
targets immersive VR systems, but also fully supports desktop PCs.

The most vital part for the integration of the various interaction
techniques is the focus management of ViSTA Widgets. Interaction
techniques utilize different kinds of Focus Strategies and rely on
the guarantees the Widget system makes in terms of when focus is
granted and to whom. One characteristic situation occurs when el-
ements of different interaction techniques occlude each other, e.g.,
configuration dialogs opened in front of visualization elements. In



Figure 4: Interaction in flapAssist, like the SceneCamera shown
here, is realized using ViSTA Widgets. Focus Strategies are exten-
sively used to consistently combine all Widgets.

these situations it must be ensured that the overall interaction be-
havior remains consistent and predictable to the user to avoid con-
fusion and erroneous handling. For this, Merger Focus Strategies
are used extensively. Since most occlusions were identified to be
caused by Widgets that primarily rely on ray casting, the related Fo-
cus Strategy is given priority over others, e.g., IntenSelect, using a
Priority Merger Focus Strategy. Modal interaction techniques, such
as the SceneCamera for taking virtual photos (see Figure 4), or Ex-
tended Pie Menus [Gebhardt et al. 2013] for configuration, make
heavy use of the Exclusive Focus mechanism and the Always-in-
focus Strategy. To avoid accidental interaction with other Widgets,
these techniques request Exclusive Focus as soon as they become
active.

Another part of ViSTA Widgets, the Input Slots, is used for the in-
tegration of speech recognition to perform multi-modal interaction
tasks. For object selection, a Virtual Device is defined, which holds
a 6-DoF Input Slot that is fed by a 6-DoF input device but uses
a speech-recognition-based Boolean Input Slot for selection. De-
pending on the command a user speaks, the state of the Input Slot
is modified. To emulate a click, a command like ‘select’ toggles the
selection slot’s state to true and immediately back to false. In con-
trast, to realize grabbing, a command like ‘grab’ first sets the slot’s
state to true, but then awaits another command such as ‘release’ to
set it back to false.

5.5 Analysis of Multi-dimensional Functions

In the configuration of manufacturing processes, e.g., the configu-
ration of laser cutting machines, parameters like the power or the
focal position of the laser affect quality criteria like the rough-
ness of the resulting cut or the cutting speed. This mapping can
be modeled via multi-dimensional functions, so-called metamodels
[Khawli et al. 2016]. To aid engineers in optimizing manufacturing
processes, memoSlice, a CMV application for the analysis of such
metamodels was created.

It is designed to be used as stand-alone application for desktop sys-
tems, but also as Widget that can be brought up for the optimization
of machine settings within flapAssist as illustrated in Figure 5 [Geb-
hardt et al. 2014]. To achieve this, it has been built upon ViSTA
Widgets. The whole visualization system is designed as a multi-
layered Widget architecture. A single Compound Widget comprises
several child Widgets that are again composed of child Widgets and

so on. This design allows for easily realizing direct manipulation
on different types of visualizations for the shown metamodel.

For stand-alone desktop use, this Widget can be instantiated in an
application that sets up a basic Widget system. Here, a Virtual De-
vice, which uses mouse input that has been transformed to 6-DoF
input via a DFN is used to interact with the Widget. To be used
within flapAssist, the Widget can be instantiated and registered with
the existing Virtual Devices like any other Widget. Due to the de-
vice and focus abstractions provided by ViSTA Widgets no further
setup is required to be able to interact with memoSlice in flapAssist.

Figure 5: Collaborative analysis session with memoSlice as Widget
inside of flapAssist.

5.6 Performance Evaluation

In VR applications, performance is crucial, since latency and low
frame rates can reduce immersion and introduce simulator sickness.
Consequently, we took care to minimize the impact of ViSTA Wid-
gets on the overall performance of applications that make use of it.
The latency added by our framework is determined by the overall
computation time required by the Widget system’s update call, as
well as the rendering of the Views. It cannot be generally named,
since it depends on the actual Widget setup. The rendering delay of
the views heavily depends on the respective quality and implemen-
tation and will not be further analyzed here.

For the update cycle, we found that the required time strongly de-
pends on the current setup. However, it is split among the three
steps of the update cycle. First, in the update of Virtual Devices
the evaluation of Focus Strategies consumes most of the calcula-
tion time. Second, the update of Traits is usually the smallest con-
sumer of calculation time. Third, in the update of Widgets we could
observe the strongest variance among different applications. Ex-
amples of the performance impact are illustrated in Table 1, where
we present measurements for different applications and test setups.
The measurements were performed on a desktop PC with an Intel®
Xeon® E5-1650 v2 CPU (6 cores, 3.5 GHz) with 12 GB of RAM.

These measurements include some of the sample applications pre-
sented earlier. In Bottle Blowing, the described setup of eight Vir-
tual Devices (one for each finger), each with an IntenSelect Focus
Strategy is used and ten bottle Widgets are present in the example
setup. Here, the total performance impact for the use of ViSTA
Widgets is < 0.04 ms and thus negligible.

The applications flapAssist and memoSlice are among the most
complex ones that were realized with ViSTA Widgets so far. They
were measured stand-alone and as combined version. The times



# Widgets Device Trait Widget Total
BB 10 0.031 0.006 0.000 0.039
fA 1,019 1.101 0.132 1.094 2.331
mS 1,717 1.625 0.301 0.686 2.615

fA+mS 2,041 1.432 0.306 2.174 3.916
SWT 10,000 8.482 0.724 0.069 9.278

EPMT 8,849 0.001 0.919 0.427 1.351

Table 1: Number of Widgets and update times (ms) for the applica-
tions Bottle Blowing (BB), flapAssist (fA), memoSlice (mS), memo-
Slice integrated in flapAssist (fA+mS), Sphere Widget Test (SWT),
and Extended Pie Menu Test (EPMT). Times are depicted for the
single steps of the update cycle and its total time.

depict the average performance impact per frame over an analysis
session with different data sets from productive environments. Both
applications make use of a variety of pre-defined and custom Wid-
gets with different complexities. In both applications, the number
of present Widgets depends on the currently analyzed data set. Each
setup makes use of two Virtual Devices. A viewer device is used
for aligning certain Widgets to the viewer’s eye position, but does
not contain any Focus Strategies. The second one is used for inter-
acting with the application. It uses a combination of ray casting and
IntenSelect together with multiple Always-in-focus Strategies that
realize various modal dialogs. Most of the calculation time for the
update cycle is consumed by the evaluation of Focus Strategies and
the Widget updates, while Trait updates consume the smallest pro-
portion. The largest overall calculation time is present in the com-
bined solution, with a total update time of < 4 ms. Consequently, a
target frame rate of, e.g., 60 Hz can be maintained if the rest of the
application does not require a calculation time of > 12 ms. If the
Widget system is run concurrently to the render thread, the added
latency of < 4 ms is negligible.

In addition to benchmarks of the presented sample applications,
we included two test settings to illustrate performance boundaries.
First, we show measurements for a settings where 10,000 Sphere
Widgets are randomly distributed in empty space, all of which can
be grabbed and dragged around. We chose this setting to illustrate
an upper boundary for the performance impact of the evaluation
of Focus Strategies, because 10,000 active Widgets by far exceed
any real scenario we encountered until now. Two Virtual Devices
are present, each with a ray casting and an IntenSelect Focus Strat-
egy combined via a Priority Merger Focus Strategy. Consequently,
focus evaluation on all Widgets is performed for four Focus Strate-
gies. In this setting it is the biggest impact factor, contributing with
over 90 % to the overall update time of < 10 ms. While 10 ms are
definitely a considerable amount of update time, a frame rate of
60 Hz can still be maintained if the rest of the application does not
a require calculation time of > 6 ms.

As second test setting, we included measurements for a scene that
only contains a complex Extended Pie Menu, to illustrate the im-
pact of modal menus. This menu consists of four layers with 4
entries each. Every sub-menu and menu entry is implemented as a
Widget, which results in 8,849 Widgets in total, which, again, ex-
ceeds any real-world scenario we encountered so far. The provided
measurements apply for the menu being opened to the lowest layer,
which means that one sub-menu per hierarchy is visible, while all
others are invisible. One Virtual Device is present, only facilitat-
ing an Always-in-focus Strategy to grant Exclusive Focus. Since
the menu system was developed independently and later adapted
to our Widget system, it handles entry selection internally within
its Widget and Trait updates. Consequently, these two update steps
are the strongest contributors to the overall update time, which is
slightly above 1 ms. This example illustrates that even complex

modal menus only have a marginal performance impact when uti-
lizing ViSTA Widgets.

In summary, the presented measurements show that the perfor-
mance impact of our framework strongly depends on the current
setup. Contributing factors are the number and type of used Wid-
gets, the amount of currently active Widgets, their complexity, and
especially the number and type of used Focus Strategies. For the
most common, relatively simple scenarios, the added latency is neg-
ligible. Even in complex setups with several thousand active Wid-
gets, only a tolerable amount of end-to-end latency is added to the
overall system by using ViSTA Widgets. Furthermore, it has to be
kept in mind that tasks like focus evaluation and interaction han-
dling also need to be performed if a custom solution is realized.
Consequently, the presented times cannot be seen as pure overhead
of ViSTA Widgets.

6 Limitations and Future Work

As already mentioned and illustrated by the example applications,
ViSTA Widgets have been developed in an iterative development
process where application developers participated as early as pos-
sible. While the framework is in a stable state and being used in
production, there are still limitations that will be addressed in fu-
ture development cycles.

One of these limitations is due to the implementation of the cur-
rent constraint mechanism. While constraining Fields via the afore-
mentioned Constraint Signal mechanism enables flexibility in de-
velopment, this feature is prone to breaking Widgets if application
developers add Constraints that conflict with Constraints included
by Widget developers. This can happen, e.g., if a slider Widget’s
Range Constraint enforces a range that conflicts with that of an-
other user-set Range Constraint. While this would currently only
produce a run-time warning, we plan to include measures in future
development cycles that prevent such misuse.

Another limitation arises from the flexibility of the framework.
While it provides developers with many possibilities in terms of the
design of interaction techniques and concepts, it also requires them
to craft noticeable amounts of glue code to set up Input Slots, Vir-
tual Devices, Focus Strategies, and so on. Based on developer feed-
back and code reviews, we plan to address this overhead by provid-
ing building blocks for recurring application scenarios. However,
it is not trivial to identify a reasonable granularity of such building
blocks that, on the one hand, significantly reduces setup code while,
on the other hand, maintains flexibility. Consequently, further anal-
ysis will be required until we successively add such features.

Until now, ViSTA Widgets are not publicly available, but we have
scheduled an open source release in the near future.

7 Conclusion

In this paper, we presented ViSTA Widgets, a new framework for
the creation of 3D UIs for IVEs. We illustrated how the modular de-
sign with its device abstraction and focus management, along with
other features, enables the creation of reusable interaction build-
ing blocks. We demonstrated how these building blocks can easily
be combined and extended to form complex 3D UIs by present-
ing example applications. Since we are continuously improving
the framework, it still has limitations, which were also discussed
to outline the direction of future development cycles. Nonetheless,
ViSTA Widgets is already a valuable framework that makes the cre-
ation of 3D UIs easier and faster for application developers and is a
great help in the daily work of developing VR applications.
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