
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2015)
F. Jaillet, G. Zachmann, and F. Zara (Editors)

Level-of-Detail Modal Analysis for Real-time Sound Synthesis

Dominik Rausch1,2 and Bernd Hentschel1,2 and Torsten W. Kuhlen1,2

1Virtual Reality Group, RWTH Aachen University
2Jülich Aachen Research Alliance - JARA-HPC

Abstract
Modal sound synthesis is a promising approach for real-time physically-based sound synthesis. A modal analysis
is used to compute characteristic vibration modes from the geometry and material properties of scene objects.
These modes allow an efficient sound synthesis at run-time, but the analysis is computationally expensive and
thus typically computed in a pre-processing step. In interactive applications, however, objects may be created or
modified at run-time. Unless the new shapes are known upfront, the modal data cannot be pre-computed and thus
a modal analysis has to be performed at run-time.
In this paper, we present a system to compute modal sound data at run-time for interactive applications. We
evaluate the computational requirements of the modal analysis to determine the computation time for objects
of different complexity. Based on these limits, we propose using different levels-of-detail for the modal analysis,
using different geometric approximations that trade speed for accuracy, and evaluate the errors introduced by
lower-resolution results. Additionally, we present an asynchronous architecture to distribute and prioritize modal
analysis computations.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—Audio Output H.5.5 [Information Interfaces and Presentation]: Sound and Music
Computing—Signal Synthesis

1. Introduction

In Virtual Reality and many other interactive applications,
sound is an important component. To synthesize sounds, the
most common approach is to record samples and play them
back when a corresponding auditory event occurs. How-
ever, especially when applications are highly interactive or
contain physically simulated objects, there may be a high
number of different auditory event types – different stones,
glasses, balls, etc. that possibly collide with one another or
the scenery. Furthermore, a single sound per event type may
sound repetitive and unrealistic, since in reality differences
in material and excitation produce audibly different sounds.
For example, when tapping a wine glass at different loca-
tions, or when dropping stones of different shapes or sizes,
we expect different sounds. Thus, the number of sounds that
would require recording can become very high, creating an
unreasonable effort.

An alternative approach is physically-based sound syn-
thesis, which calculates the sound of an object based on a
physical description. For interactive applications, modal syn-
thesis [Adr91, OSG02] offers a suitable solution. By per-

forming a modal analysis [Sha96], one can compute the
vibration modes of an object, which describe characteris-
tic resonant frequencies, decays and deformation shapes.
During run-time, these modes are excited by forces acting
on the object, and the resulting deformation can be trans-
lated into sound. The run-time synthesis is very efficient
and can be computed in real-time for many complex ob-
jects [RL06, RHK14]. However, a modal analysis is com-
putationally expensive, and is thus usually performed in a
pre-processing step.

In order to pre-compute a modal analysis, all objects’ ge-
ometries and material parameters have to be known upfront.
However, in interactive applications, this may not always be
the case. For example, existing objects may be deformed by
a soft-body simulation or interactively modified by a user,
e.g. when scaling or sculpting. Furthermore, completely new
objects can be created at run-time, for example when a bot-
tle breaks into several fragments. For such objects, a modal
analysis cannot be computed upfront, yet modal data is re-
quired for them to produce sounds.

For deforming bodies, it is possible to adjust the modal

c© The Eurographics Association 2015.



D. Rausch & B. Hentschel & T. Kuhlen / Level-of-Detail Modal Analysis for Real-time Sound Synthesis

data to a limited degree [Max08], but this cannot handle
large deformations. Another option is the use of a database
of pre-computed shapes, where the best match for a new
or changed object is retrieved [GLM∗11]. However, the
modal data depends strongly on shape, size and material
properties. To avoid approximation that are too coarse, the
database would have to be very large, requiring a long ini-
tial computation. Furthermore, the modal data can be quite
large (∼35MB for an object with 3000 vertices and 1000
modes). Even though the size may be reduced by discard-
ing modes [vdDKP04, RL06] or by using compression tech-
niques [LAJJ14], a large number of objects in a modal
database would still require an unreasonable amount of
space.

Therefore, it would be beneficial to be able to perform a
modal analysis for new objects at run-time. For interactive
applications, however, the time available for a modal anal-
ysis to finish is very limited. In the worst case, a new ob-
ject may start sounding immediately, so that a result should
be available within one application frame (∼16ms for ap-
plications running at 60fps). This becomes even more chal-
lenging when multiple objects are created simultaneously.
For example, when a window breaks using dynamic frac-
ture computation, several shards are created and immedi-
ately collide with each other.

To enable a modal sound synthesis for such a scenario,
we have examined the time requirements of a modal analy-
sis, which mainly depends on the complexity of the object’s
geometry. The main factor of the analysis is the Eigende-
composition of a matrix, for which we compare the perfor-
mance of different math libraries. This way, we determine
how complex a geometry may be to be analyzed in a given
time. Based on this, we propose the usage of different sound
Levels-of-Detail (LoDs) that trade computation time against
accuracy, and examine the impact of the simplification on
the resulting sounds. To compute multiple LoDs and to han-
dle several analyses simultaneously within appropriate time
frames, we distribute the work among multiple worker in-
stances running locally or on remote clients.

The remainder of this paper is structured as follows. In
section 2, we will explain the basics of modal analysis, and
provide benchmark results of various Eigendecomposition
routines and the whole modal analysis process. The differ-
ent LoDs that we use are detailed in section 3. Section 4 de-
scribes a distributed architecture used to compute the modal
analyses. In section 5, we evaluate the error caused by the
lower-precision LoDs, followed by conclusions and future
work in section 6.

2. Modal Analysis Performance

When objects are excited by forces, the main source of
sounds are surface vibrations, which can be modeled phys-
ically. While the physical response can be computed ex-

Figure 1: Different vibration modes of a thin square steel
plate.

plicitly using a time-stepping method [OCE01], this is pro-
hibitively expensive for real-time applications due to the
high temporal resolution of audible sounds. Instead, a modal
analysis can be used to calculate the linearly independent
vibration modes of an object. These represent characteristic
vibrations with specific frequency, damping and mode shape
(see figure 1). Since modes are linearly independent, the to-
tal vibration of a surface can be computed as a superposition
of the vibration of individual modes. This allows a very ef-
ficient synthesis at run-time, where individual modes of an
object are excited by interaction forces, and their sound con-
tributions are accumulated to compute the overall sound.

2.1. Modal Analysis

A modal analysis is the process of determining an object’s
modes, either experimentally [AB93, PvdDJ∗01], analyti-
cally [RF95], or numerically from a physical mesh. While
the experimental approach is characterized by a high mea-
surement effort, and an analytic analysis is only possible for
few basic shapes, the numerical approach can be used for ar-
bitrary geometries. For these, the dynamics response of an
object to external forces is modeled by a linear dynamics
system:

K ·d+C · ḋ+M · d̈ = fext (1)

Here, d is the displacement of the vertices of the object, fext
the external force, and K, M and C are the stiffness, mass,
and damping matrices. They can be assembled using differ-
ent methods, e.g. from a Spring-Mass System [RL06] or a
Finite Element Model [OSG02, PFF∗10]. Each of these ma-
trices is a real symmetric matrix of size 3n× 3n for a three-
dimensional object with n mesh vertices. Thus, equation (1)
forms a system of 3n partial differential equations. The goal
of a modal analysis is the determination of characteristic vi-
bration modes of this system by transforming it into a sys-
tem of ordinary differential equations [Sha96]. When using
Rayleigh damping C = α · K + β · M [SRL45, RYKL13],
one can decouple the above equation system by computing
the Eigendecomposition of K̃ = L−1 ·K ·L−T . Here, M =

c© The Eurographics Association 2015.



D. Rausch & B. Hentschel & T. Kuhlen / Level-of-Detail Modal Analysis for Real-time Sound Synthesis

Eigen Meschach LAPACK ARPACK

#verts SelfAdjoint symmeig ssyev ssyevd ssyevx ssyevx L ssyevr ssyevr L regular L shift-invert L

32 0.001 0.167 0.004 0.004 0.004 0.004 0.004 0.003 0.004 0.005
64 0.006 1.148 0.024 0.023 0.024 0.023 0.020 0.020 0.020 0.025

128 0.058 9.698 0.174 0.149 0.175 0.132 0.127 0.131 0.132 0.159
256 0.530 116.128 1.413 1.175 1.422 0.956 0.950 0.961 0.908 0.980
512 3.721 887.559 11.829 9.632 11.935 9.256 8.474 9.055 6.569 6.586

1024 36.776 12345 87.278 — 87.428 61.526 56.067 63.037 76.886 72.419
2048 364.075 — 696.196 — 704.293 519.105 456.138 520.160 691.382 576.269

Table 1: Benchmark results for Eigen, Meschach, and LAPACK packages and different computation routines for different
problem sizes. Times are given in seconds, for Eigendecompositions of matrices of size 3n×3n for meshes with n vertices. If an
L is added to a method name, only eigenvalues in the audible frequency range are computed.

L · LT is the Cholesky decomposition of the mass matrix,
which is easy to compute when using a diagonal lumped-
mass matrix. Using the Eigendecomposition K̃ = V ·D ·VT

and substituting r = V−1 · d and g = V−1 · L−1 · fext , the
equation system is transformed into modal space:

D · (r+α · ṙ)+ r̈+β · ṙ = g (2)

Equation (2) has been diagonalized, because the only occur-
ring matrix D is diagonal. This way, the system is decoupled
into 3n ordinary differential equations. Each of these equa-
tions represents a damped harmonic oscillator, i.e. a mode,
and can be solved analytically. The corresponding eigenvec-
tors represent the mode shape, and from the eigenvalues and
material parameters one can derive the frequency and damp-
ing of the mode.

One advantage of modal analysis is that it only requires
an object’s geometry and physical material parameters. For
many interactive applications like Virtual Reality, a visual
geometry already exists and can be used directly for sound
synthesis, e.g. using a Spring-Mass System [RL06]. How-
ever, a Spring-Mass System cannot model bending strain
well, but this is important for shell vibrations. Thus, we use
a tetrahedral Finite Element Method. While this approach
provides better results, it requires a tetrahedral volume rep-
resentation of the objects. Construction of a solid volume
mesh is challenging and time-consuming, especially when
using the visual geometry as basis. For modal sound syn-
thesis, a common approach is to restrict oneself to only use
thin-shell meshes [CAJ09,RL06,Zam12]. These can be con-
structed from surface meshes that are non-manifold and non-
watertight, and shells commonly produce more recognizable
sounds. In our case, we construct a thin-shell tetrahedral
mesh from a surface mesh with m vertices by extruding each
triangle along its normal, forming a physical mesh with 2m
vertices.

2.2. Eigendecomposition Benchmark

The Eigendecomposition is the most time-consuming part of
the modal analysis, and its complexity is usually O(n3) for

n vertices. While there are algorithms with a lower asymp-
totic complexity [DDH07], in practice these are not faster
for small problem sizes as used here. Thus, the computation
time quickly becomes prohibitive for an increasing vertex
count. To determine limits for resolutions that are still suit-
able for a run-time analysis, we benchmarked different math
packages and their routines for the symmetric real Eigende-
composition. Specifically, we examined LAPACK (version
3.4.2, default BLAS), the optimized LAPACK and sparse
matrix routines of the Intel Math Kernel Library MKL (ver-
sion 11.0), Eigen (version 3.2.0), and Meschach (version
1.2). Since the matrix K̃ is inherently sparse, it is also possi-
ble to use sparse matrix routines, for which we tested MKL’s
feast routines as well as ARPACK (using ARPACK++
v1.2 and SuperLU v4.3). Furthermore, we used CULA (ver-
sion R17) to perform the decomposition on a GPU. LA-
PACK, MKL, and CULA provide multiple Eigendecompo-
sition routines, which follow the LAPACK naming conven-
tion: ssyev and ssyevx use a traditional QR decomposi-
tion approach, ssyevd uses a divide-and-conquer approach
[Cup80], and ssyevr uses the relatively robust representa-
tion method [PD00].

Although all tested decomposition routines also provide
double precision variants, we found that single precision
computations only produce a neglectable error. Thus, we
only provide results for single-precision computations here.
Double-precision computations require about 1.3 to 2 times
longer (depending on the problem size and used method),
which in the worst case allows for ∼20% smaller vertex
counts than single-precision computations.

For the modal analysis, usually all eigenvalues and eigen-
vector are computed. However, since the eigenvalues equal
the square of the undampened natural frequencies of the
modes, one can limit the query so that only modes in the
audible range (20Hz−22kHz) are computed. Since this can
speed up the computation, we also benchmarked these vari-
ants. For the objects in this benchmark, the material prop-
erties were chosen such that 50% of the computed modes
were in the audible range. In real applications, however, this
fraction can vary, because an increase in geometric resolu-

c© The Eurographics Association 2015.



D. Rausch & B. Hentschel & T. Kuhlen / Level-of-Detail Modal Analysis for Real-time Sound Synthesis

MKL CULA

#verts ssyev ssyevd ssyevx ssyevx L ssyevr ssyevr L feast L ssyev ssyevx ssyevx L

32 0.004 0.001 0.004 0.002 0.002 0.002 0.135 0.026 0.026 0.012
64 0.024 0.005 0.025 0.007 0.007 0.007 0.575 0.059 0.059 0.032

128 0.176 0.025 0.176 0.036 0.036 0.039 2.816 0.142 0.150 0.088
256 1.141 0.160 1.075 0.232 0.209 0.231 14.389 0.476 0.500 0.341
512 6.372 1.635 6.512 2.130 1.945 2.239 71.699 1.657 1.721 1.727

1024 67.442 9.405 72.555 13.899 11.993 14.488 353.991 7.139 7.146 13.784
2048 453.372 86.395 451.400 144.718 102.893 152.114 — 29.204 29.131 121.693

Table 2: Benchmark results for MKL and CULA packages and different computation routines for different problem sizes. Times
are given in seconds, for Eigendecompositions of matrices of size 3n× 3n for meshes with n vertices. If an L is added to a
method name, only eigenvalues in the audible frequency range are computed.

tion mostly adds high-frequency modes so that a higher per-
centage would be discarded, while it is common for low-
resolution objects to have very few inaudible modes.

All results were computed on a PC with two Intel Xeon
X5650 (each with 6 cores, 2.67GHz) and 24GB RAM. The
test program was compiled with gcc 4.8. The CULA bench-
mark was performed on an Nvidia GeForce GTX 480.

Since the decomposition time can vary depending on the
matrix structure, we decomposed the matrices correspond-
ing to 15 different physical meshes, and report the maximum
time required. The results for the different libraries and rou-
tines are listed in table 1 and table 2. As can be seen, the
MKL ssy* routines are considerably faster than other CPU-
based algorithms. It is also notable that the fastest MKL rou-
tine for a full decomposition with all eigenvalues (ssyevd)
outperforms the variants calculating a limited range of eigen-
values. Only for complex geometries and a high percentage
of inaudible modes, limiting the modal range may improve
the performance.

For the presented problem sizes, sparse matrix routines
show a worse performance that dense solvers. However,
while not beneficial for a run-time synthesis, sparse decom-
position is still important when pre-processing complex ge-
ometries, where the high memory requirements of dense ma-
trix storage would exceed memory limits.

The presented results were computed using a single CPU
thread, but MKL also supports multi-threaded computations.
Figure 2 shows the performance gain when using multiple
threads for problems of different size. As can be seen, for
small matrix sizes, the performance gain from using multi-
threading is rather lower. For larger matrices, however, a no-
table improvement is achieved, significantly reducing the re-
quired computation time.

Using the GPU-based CULA library, the computation
is significantly faster than MKL for large matrices, but
slower for small ones. This was to be expected, because
GPU computations typically come with a data transfer over-
head, and require a high level of parallelism to utilize

the full power of the GPU. On the used hardware, the
turning point where CULA’s ssyev outperforms MKL’s
ssyevd (single-threaded) is for geometries with ∼520 ver-
tices (requiring around 1.7s) Consequently, we chose MKL’s
ssyevd as the primary routine for Eigendecomposition es-
pecially for smaller problems, while CULA’s GPU-based
Eigendecomposition provides a good alternative for larger
matrices if a powerful GPU is available.

In addition to the presented methods, we also examined
packages that use a distributed cluster for the computation
of Eigendecompositions. Specifically, we looked at ScaLA-
PACK and SlepC, which are both MPI-based. These libraries
are tailored to solving large matrices. However, we found
that for a run-time modal analysis, where relatively small
matrices are used and many eigenvalues and eigenvectors
have to be computed, they are not faster than single-node
algorithms.

2.3. Complete Modal Analysis

The Eigendecomposition is the most computationally ex-
pensive operation of the modal analysis. Regarding only
the Eigendecomposition, objects with ∼94 physical ver-
tices (corrsponding to ∼47 surface vertices) can be handled
within an application frame of 16ms on the examined hard-

1

2

3

4

5

6

1 3 5 7 9 11

Sp
ee

d
u

p

Num Threads
64 256 512 1024 2048geometry vertices:

Figure 2: Multi-threaded performance of MKL ssyevd for
different numbers of threads and physical mesh vertices.

c© The Eurographics Association 2015.



D. Rausch & B. Hentschel & T. Kuhlen / Level-of-Detail Modal Analysis for Real-time Sound Synthesis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128 256 256 1024 2048
num surface vertices

Network

Eigendecomposition
6threads

Mode Processing
Geometry+Collision

Matrix Assembly
Eigendecomposition

0.001s 993s0.006s 0.028s 0.163s 1.0s 7.0s 57.9s

Figure 3: Relative computation time required by different
components of the modal analysis for meshes with different
surface vertex counts.

ware. However, a modal analysis has to perform additional
steps to allow a real-time sound synthesis. As a first step, the
thin-shell geometry is prepared, and the mass and stiffness
matrices have to be assembled. After the decomposition, the
results have to be further processed by storing mode and ex-
citation data in suitable run-time data structures. Addition-
ally, inaudible modes are removed, gains are pruned, and
acoustic transfer factors are computed. Furthermore, a col-
lision data structure is built in order to map impact forces to
mode excitation.

Figure 3 shows the relative computation time for objects
with different vertex counts (Stanford bunnies of different
resolutions). The modal analysis was performed using MKL
ssyevd using a single thread, and using 6 threads for com-
parison. As can be seen, even for small problems the Eigen-
decomposition time exceeds the time required by other com-
ponent, and quickly becomes the dominating factor for rais-
ing vertex counts. When computing a modal analysis locally,
the 16ms limit allows for an analysis of geometries with ap-
proximately 45 surface vertices. Since the Eigendecomposi-
ton time varies with the geometry, however, some problems
may require longer. From the maximal computation times
determined by the Eigendecomposition benchmark, we can
conclude that geometries with 40 surface vertices can be an-
alyzed within the given time.

Optionally, one can perform the computation on a remote
PC. In this case, the query and result have to be serialized
and transmitted over the network. The network transfer du-
ration (using Gb-LAN) is also listed in figure 3 . The query
includes the full geometry data, and the result contains the
gain matrix with 3 ·#vertices×3 ·#modes entries. Thus, the
network transfer can require a significant amount of time,
which is relevant especially for very small objects. Thus, re-
mote computations should only be performed for larger ob-

Figure 4: Different Levels-of-Detail of a Stanford bunny: (a)
full geometry, reduced to (b) 400 and (c) 100 vertices, (d)
convex hull, Shrink-Hull with (d) 66 (e) 38 and (f) 26 ver-
tices, (h) 26-Hull.

jects, where the impact is less severe and results may take
longer.

3. Level-of-Detail Analysis

When new objects are created at run-time, or existing ones
are changed, it is necessary to calculate the new modal
data within the time constraints of an interactive applica-
tion. Thus, we have to ensure that modal analysis results
are available fast enough. For this, we use different Levels-
of-Detail (LoDs) (see figure 4). By reducing the complexity
of the geometric mesh, we can compute the modal analysis
faster. However, the resulting sounds have a lower accuracy,
so that higher-quality modal results should be computed, too.
Therefore, lower-quality approximations are computed first,
and are successively replaced by better results once their
slower analyses finish. For this, we propose different LoDs
that trade precision for computation time.

While we have to differentiate between physical vertices
and surface vertices of a mesh, these have a fixed relation of
two-to-one for the used thin-shell meshes. In this section, all
vertex counts will refer to the surface mesh.

3.1. Full Mesh

As highest-quality LoD, we use the mesh with full resolu-
tion. This mesh does not necessarily have to be the same
as the input mesh, but may be refined or remeshed to meet
uniformity and edge length criteria. Full-resolution meshes
typically consist of thousands of vertices.

3.2. Mesh Simplification LoDs

As has been shown in section 2.3, the required time for a
numerical modal analysis mainly depends on the number
of vertices. In order to gain faster results, one can use ap-
proximated meshes with a controllable amount of vertices.

c© The Eurographics Association 2015.



D. Rausch & B. Hentschel & T. Kuhlen / Level-of-Detail Modal Analysis for Real-time Sound Synthesis

Figure 5: Stanford armadillo and bell with different hull
approximations. From left: 26-Hull, 26-Shrink-Hull, 38-
Shrink-Hull, 66-Shrink-Hull.

The common approach to reduce the amount of vertices is
the usage of optimization-based mesh simplification algo-
rithms [CMS98]. In our framework we create several LoDs
that simplify the mesh up to a target vertex count. Doubling
the vertex count increases the computation time by a factor
of approximately eight, so we chose to compute simplifica-
tions with 100 · 2n vertices (up to a maximum of half the
vertices of the original mesh).

However, the mesh simplification requires some time, and
– depending on the initial complexity of the geometry –
can be too time-consuming to ensure a completion within
the given time constraints. For example, reducing a Stan-
ford bunny mesh with 8000 vertices to 512 vertices re-
quires 82ms using vtkQuadricDecimation of the Vi-
sualization Toolkit (version 6.1.0), and 846ms using Sur-
face_mesh_simplification of CGAL (version 4.4).
Thus, simplification is suitable for higher-quality approxi-
mations, but may be too slow to calculate an initial approxi-
mation.

3.3. Hulls

Optimally, a first numerical analysis should be available fast
enough to generate sounds in the next application frame (i.e.
within 16ms). This time span allows for an analysis of a
geometry with approximately 40 surface vertices (see sec-
tion 2.3). Thus, a suitable approximation should reliably re-
duce the vertex count to this limit, while producing reason-
able geometries and being computationally efficient.

One type of approximations that are commonly used in
collision detection are bounding volumes. Simple volumes,
like bounding spheres or boxes, would only coarsely approx-
imate the geometry, but a convex hull is a reasonable fit for
many objects. However, the vertex distribution of a convex
hull is often very irregular, with many vertices around round
features and large faces along concave areas (see figure 4
(d)). Furthermore, one cannot control the target vertex count
for a convex hull, which in the worst case may equal the
original mesh (e.g. for a sphere).

k-DOPs [KHM∗98] are another suitable option. They cal-
culate a bounding volume from the convex intersection of
k half-planes with fixed normals. Using k-DOPs to calcu-
late a hull provides an upper limit on the number of vertices.
However, the vertex count may still vary significantly, and
the extraction of a mesh from the half-plane formulation is
complicated. Instead, we designed different methods to build
simplified hulls.

k-Hull Since bounding volumes are often used for collision
detection, it is important that they fully envelope the volume.
To approximate a mesh for a modal analysis, however, this
property is not required so that the reduced mesh may inter-
sect the original mesh. This can even be beneficial, because
envelopes overestimate the objects’ volume, which usually
produces modes with lower frequencies.

We use a hull-construction approach that combines as-
pects of k-DOPs and convex hulls, which we call k-Hulls.
These are formed by at most k convex vertices of the original
mesh. To compute these vertices, we define a set of k

2 uni-
formly distributed axes. For each axis, we determine the two
vertices whose projection onto the axis is minimal or max-
imal. These points form a convex set, so we can efficiently
construct a mesh from them. The k-Hull can also be com-
puted quickly: a mesh with more than 10000 vertices can be
converted to a 26-Hull in ∼0.4ms.

k-Hulls provide a mesh similar to a convex hull, but with
fewer vertices so that some features are cut off. They offer
a controllable vertex count and a slightly better vertex dis-
tribution. However, they still suffers from several problems
(see figure 4 (h) and figure 5). Due to the convexity of the re-
sult, the enclosed volume can include empty regions inside
concavities and thus be significantly larger than the original
mesh, especially if the object has protruding features like
the armadillo’s arms and legs. Furthermore, faces are still
frequently badly shaped, and the vertices can cluster at fea-
ture points, e.g. the ears of the bunny or the hands of the ar-
madillo. Lastly, because the k-Hull only uses vertices from
the original mesh, it cannot subdivide large faces, potentially
creating large unsampled areas.

Shrink-Hull To reduce the problems of the k-Hulls, we pro-
pose another alternative, which we call Shrink-Hull. In a first
design iteration, it was constructed by emitting k rays from
the object’s center-of-gravity and determining their intersec-
tion points with the mesh. The outermost intersection point
per ray is used as vertex for the approximate mesh. The result
is a (possibly non-convex) mesh with exactly k vertices, and
can be seen as an enclosing sphere whose vertices have been
moved towards the center until they touch the original mesh.
The resulting mesh has a more uniform vertex distribution
than the k-Hull, and is not restricted to the original mesh
sampling. While the k-Hull tends to overestimate the vol-
ume, the Shrink-Hull approximation has the opposite prob-
lems: while sometimes the size is similarly overestimated,

c© The Eurographics Association 2015.



D. Rausch & B. Hentschel & T. Kuhlen / Level-of-Detail Modal Analysis for Real-time Sound Synthesis

more often features that are not within the sampling resolu-
tion are lost, and thus the resulting object is often smaller
than the original mesh. Furthermore, many features are not
sampled by the rays and are thus lost, which makes this basic
approach problematic.

To enhance the Shrink-Hull further, we extended it to first
search for extremal points along each ray like for k-Hulls,
but limited to points within a small cone (with resolution-
dependent angle) around the axis. This prevents the choice
of identical or similar extremal points for pronounced fea-
tures, e.g. the bunny’s ears, as it occurred for k-Hulls. If no
suitable extremal point is found, a ray cast is used to deter-
mine an intersection point. If neither an extremal or inter-
section point is found, the corresponding vertex is discarded
– thus, Shrink-Hulls can even handle holes in an object, like
the bottom of the bell, and generally produces a better vertex
distribution than the k-Hull (see figure 5).

The Shrink-Hull can better follow non-convex regions,
like the curve of the bell or the waist of the armadillo, than
the k-Hull. Since fewer concave regions are included, the
volume is usually much closer to the original mesh, and the
vertices are more evenly sampled. All in all, the Shrink-Hull
gives a good low-resolution approximation for most meshes.
The explicit ray casts slightly increase construction cost,
which requires ∼1ms to build a 38-Shrink-Hull for an object
with 10000 vertices. For the bell example, the full analysis
of Shrink-Hulls with 26, 38, and 66 vertices require 4.3ms,
7.4ms, and 25.6ms. Thus, we use a Shrink-Hull with 38 ver-
tices as lowest-quality numerical analysis, and another one
with 66 vertices for a more precise result. If required, we
also allow computing a 26-Shrink-Hull, e.g. when using a
slow processor or if a high number of modal analyses are
requested simultaneously.

3.4. Analytic Solution

The numerical analysis of a single Shrink-Hull approxima-
tion can be computed fast enough to allow a sound synthe-
sis in the next frame. However, there may still be situations
where this is too slow, e.g. when multiple objects are created
simultaneously and immediately start to produce sounds. For
such scenarios, we require an even faster LoD.

For some simple geometric shapes, like beams, mem-
branes, and plates, modes can be computed analytically
[RF95]. Such an analytic solution can be computed very fast,
but due to the limited shapes available, strong approxima-
tions are necessary. In our implementation, we approximate
objects using rectangular plates. Flat objects are modeled us-
ing a single palte, while thicker objects are approximated by
six plates forming a box. To align the plates with the ob-
ject, one could use the axis aligned bounding box of the ob-
ject, but this would only coarsely relate to the geometry, de-
pend on its orientation and often significantly overestimate
the size. Instead, we use a principal component analysis of

the object’s vertex distribution to determine the orientation
of the box, similar to the approximate computation of ori-
ented bounding boxes [GLM96]. The extents are determined
from the variance of the vertices along the axes.

For each plate, we analytically compute the first 100
modes. Both the box alignment and the analytic mode com-
putation can be performed very fast (∼0.2ms for an object
with 10000 vertices). This allows us to compute the analytic
result on-the-fly whenever sound synthesis is requested for
objects for which no numerical modal result has been com-
puted yet.

4. Distributed LoD Analysis

Using the different LoDs, it is now possible to calculate in-
crementally better results for the modal analysis. For the
use-case of interactive sound synthesis, the modal data is re-
quired on a system (the application host) that performs the
run-time modal synthesis, which detects interaction forces,
excites modes, and computes the resulting output. Since the
application host usually also handles other application fea-
tures, like visual rendering and physical simulation, only
limited resources are available for the modal analysis com-
putation. Thus, large modal analyses would take too long, es-
pecially if multiple analyses are performed simultaneously.
Also, long-running analyses of high-quality LoDs could de-
lay computations of high-priority initial LoDs. Therefore,
we designed an architecture that computes different modal
LoDs asynchronously using multiple analysis workers, both
in concurrent threads on the application host and on remote
clients.

We define multiple priority classes, and assign a set of
workers to each of these classes. In our setup, we found
three priority classes to be sufficient. High-priority jobs pro-
cess the hull approximations with 26, 38, or 66 vertices.
Medium-priority jobs compute simplified and full meshes
with at most 512 vertices. Low-priority jobs calculate all
analyses with more than 512 vertices. Optionally, depend-
ing on the system configuration, lower-priority workers can
also compute jobs of a higher priority.

For each priority class, we assign a specific set of work-
ers. Local workers run in a concurrent thread on the applica-
tion host, while remote workers calculate an analysis on PCs
connected over via network. While local workers can only
use limited resources due to requirements of the main appli-
cation, dedicated remote workers can use more processing
power, but suffer from network transfer overhead, especially
for smaller jobs (see section 2.3). Thus, small, high-priority
jobs should be computed by local workers, and larger jobs
by remote workers.

In our setup, we use one primary PC and four worker
nodes, each with two six-core CPUs. On the primary PC we
use four to eight concurrent worker threads for high-priority

c© The Eurographics Association 2015.



D. Rausch & B. Hentschel & T. Kuhlen / Level-of-Detail Modal Analysis for Real-time Sound Synthesis

0 4000 8000 12000 16000 20000

G
ai

n

Frequency (Hz)

sphere

400 800 1600 3200 6400 12800

G
ai

n

Frequency (Hz) log scale

bell

Full

Red400

Red100

66-SHull

38-SHull

26-SHull

26-Hull

Analytic

Figure 6: Comparative frequency spectrums of sounds produced by different LoDs of a sphere and a bell.

tasks, depending on the resource requirements of other ap-
plication components. Each of these workers uses a single-
threaded Eigendecomposition because small jobs show only
a minor speedup from additional threads. On each remote
node, two worker processes are running, using one CPU with
6 MKL threads each. Of the eight remote workers, each four
are assigned to the medium- and low-priority tasks. With this
setup, we can compute analyses of multiple hull approxima-
tions within a single application frame, while several larger
jobs can be handled remotely. If even more performance is
required, one can utilize the GPUs of the remote PCs, or add
more nodes.

If only a single PC is available, one can still achieve
acceptable performance. In this case, the majority of the
threads should be reserved for high-priority tasks, and the
medium and low workers’ thread priority should be reduced
to ensure that high-priority tasks are started without delay.
While this delays more precise results, it ensures that at ap-
proximate results are available as soon as possible.

When a new modal result arrives for an object, it replaces
the currently used result. However, if the object is currently
excited, we have to prevent discontinuities in the generated
sound. Thus, we maintain the previous result until its ex-
citation has receded, but all following excitation forces are
applied to the new result.

5. LoD Approximation Quality

The LoDs reduce the geometric resolution to allow an inter-
active modal analysis. However, low-resolution geometries
produce different results than high-resolution ones. While a
certain change is tolerable, the general characteristics of the
sound should not change too much.

We examined different meshes to determine the influence
of the geometry resolution. This showed that – even when no
features are lost – reducing the resolution of a mesh produces
a shift towards higher frequencies. A similar observation has
been reported by [OSG02], and the authors proposed to sim-
ply adjust material parameters to counter the effect. This,

however, would require manual adjustment for each object
an LoD, which does not work well for automatic analyses
with multiple resolutions.

Especially when a low shell thickness is combined with
large triangles, the resulting extruded tetrahedra are badly
shaped, resulting in very high deviations from the original
result. To determine the extent of the frequency shift, we
examined different models at decreasing resolutions. This
showed that the frequency shift depends on the edge ra-
tio of the tetrahedra, which led us to an implementation of
a correction formula: When assembling the global stiffness
matrix, we scale the tetrahedron stiffness matrix by 1

sqrt(r) ,
where r is the ratio between the average edge length and the
shortest edge of the tetrahedron. While not fully negating the
frequency shift, it strongly reduces the impact.

Apart from the frequency shift, lower-resolution LoDs
have fewer features and potentially missing holes and differ-
ent volumes, which may alter the produced sounds further.
To evaluate the introduced error, we compare different ex-
ample geometries and their LoDs. Figures 6 and 7 show the
frequency spectrums produced by different LoDs of a sphere
(diameter 250mm, shell thickness 10mm), a bell (base di-
ameter 638mm, shell thickness 10mm), a Stanford bunny
(height 154mm, shell thickness 5mm), and a Stanford ar-
madillo (height 151mm, shell thickness 1mm), all using ma-
terial parameters for steel (Young Modulus 200GPa, Pois-
son ratio 0.29, damping parameters α = 3 ·10−8 and β = 5).
Sounds produced by the examples can be found in the sup-
plemental material.

For the sphere, all numerical results produce similar
sounds, with only small variations in the frequency and dis-
tribution of modes. Due to the simple, convex geometry of
the sphere, the non-analytical LoD geometries are also ac-
curate, uniformly sampled sphere representations that only
vary in resolution, which represents a best-case scenario. As
a more complex example, the larger and thicker bell pro-
duces lower-frequency sounds, which shows a general prob-
lem of the low-resolution approximation: Fewer vertices
provide fewer degrees-of-freedom, and thus fewer modes.

c© The Eurographics Association 2015.



D. Rausch & B. Hentschel & T. Kuhlen / Level-of-Detail Modal Analysis for Real-time Sound Synthesis

0 4000 8000 12000 16000 20000

G
ai

n

Frequency (Hz)

bunny

Full

Red400

Red100

66-SHull

38-SHull

26-SHull

26-Hull

Analytic

0 4000 8000 12000 16000 20000

G
ai

n

Frequency (Hz)

armadillo

Figure 7: Comparative frequency spectrums of sounds produced by different LoDs of a Stanford bunny and a Stanford ar-
madillo.

Additional modes typically model higher frequencies, so
that for k-Hull and Shrink-Hull LoDs, the high-frequency
spectrum shows no peaks. While this slightly alters the tim-
bre, the effect is rather small since high-frequency modes are
strongly damped. A more significant effect that produces au-
dible differences in the bell sound is the frequency shift, as
well as the less pronounced base modes which are character-
istic for a bell’s sound. Here, it is notable that the full (visual)
mesh shows a worse result than the simplified meshes due to
a less uniform triangulation, which emphasizes the fact that
full-resolution meshes should be further processed to match
high mesh quality criteria.

Representing more complicated, non-convex geometries
with many features, we analyzed the bunny and armadillo.
When comparing the full-resolution model with the simpli-
fied variants, we again see the aforementioned shift towards
higher frequencies in general, but even for the armadillo with
a very thin shell (1mm), it is acceptably small due to the cor-
rection factor. A more significant impact is the loss of fea-
tures. For the armadillo, the full and simplified meshes show
a cluster of low-frequency modes, representing vibrations of
the limbs, that are separated from the modes representing
body vibrations. The k-Hull approximation does not show
this separation, although the significantly overestimated vol-
ume of the hull leads to a general shift of all modes towards
lower frequencies. The Shrink-Hull, on the other hand, man-
ages to coarsely sample the extremities, thus producing sim-
ilar – although fewer – limb modes separated from the main
torso modes.

The Stanford bunny shows the highest error for the LoDs.
Like the armadillo’s limbs, its ears produce distinct low-
frequency modes, but neither k-Hull nor Shrink-Hull man-
ages to capture these adequately. Even when using mesh
simplification, it reduces the sampling and volume of the
ears, so that they are less separated from the torso modes.

For all tested objects, the different numerical results pro-
duce audible differences, but the general characteristics of
the sounds are quite similar, so that the synthesized sounds

still appear plausible for the corresponding object and mate-
rial. When examining the analytic results, however, we see
significant deviations from the numerical results. Because
the object is only very coarsely approximated by plates, this
was to be expected, and emphasizes that analytical results
should only be used as a fall-back if a first numerical result
cannot be provided in time.

6. Conclusion

We have presented a system to calculate modal analyses at
run-time, in order to allow a modal sound synthesis for dy-
namically added or modified objects. We have compared the
performance of different Eigendecomposition packages, and
determined the computation time for modal analyses of ob-
jects with different complexity. Based on these limits, we
proposed different LoD approximations that provide succes-
sively more accurate approximations. By using Shrink-Hull
approximations, a first approximation can be computed in
<16ms. Higher-resolution analyses of the full geometry and
several simplified meshes are computed, too, and replace
lower-resolution LoDs as soon as they finish. If the lowest
LoDs still takes too long (e.g. when many objects are cre-
ated simultaneously), we use a coarse analytic solution.

To ensure that modal results are available as soon as pos-
sible, we presented a system using multiple workers, both in
concurrent threads and on remote PCs connected over a net-
work. This way, sounding objects can be added to dynamic
interactive environments during run-time and can produce
approximate sounds immediately, while the results become
more accurate when longer computations are finished.

The presented system uses different approximations of the
geometry, and a correction factor was defined to reduce the
frequency shift of lower geometry resolutions. The quality of
the results was evaluated by examining the frequency spec-
trums of example objects, which showed that lower resolu-
tions lead to small frequency shifts, as well as artifacts from
missed features and volume deviations. The examples indi-
cate that the numerical approximations sound similar to the

c© The Eurographics Association 2015.



D. Rausch & B. Hentschel & T. Kuhlen / Level-of-Detail Modal Analysis for Real-time Sound Synthesis

full resolution, and provide a meaningful result while com-
puting the higher-quality results. The analytic results, how-
ever, produce significantly different sounds, and should only
be used as last option if no initial numeric LoD can be com-
puted in time.

In Virtual Environments, sounds do not necessarily have
to be exactly realistic, but only need to be plausible – there-
fore, the results of the numeric LoDs seem to work reason-
ably well. For future work, we are planning to perform a
further evaluation of the legitimacy of these approximation
in the form of a quantitative user study comparing recorded
sounds and sounds that have been synthesized from different
LoDs.

Another interesting approach that can be examined in the
future is the consideration of latency tolerances. By delaying
the sound produced by a newly created modal object, one
could increase the resolution of the lowest LoD, yielding a
better result. This would reduce the approximation error at
the cost of an increased audio latency.

References
[AB93] ALLEMANG R. J., BROWN D. L.: Experimental modal

analysis. Handbook on Experimental Mechanics (1993), 635–
750. 2

[Adr91] ADRIEN J.-M.: The missing link: Modal synthesis. In
Representations of Musical Signals (1991), MIT Press, pp. 269–
298. 1

[CAJ09] CHADWICK J. N., AN S. S., JAMES D. L.: Harmonic
Shells: A practical nonlinear sound model for near-rigid thin
shells. ACM Transactions on Graphics 28, 5 (2009), 119:1–
119:10. 3

[CMS98] CIGNONI P., MONTANI C., SCOPIGNO R.: A compar-
ison of mesh simplification algorithms. Computers & Graphics
22, 1 (1998), 37–54. 6

[Cup80] CUPPEN J.: A divide and conquer method for the sym-
metric tridiagonal eigenproblem. Numerische Mathematik 36, 2
(1980), 177–195. 3

[DDH07] DEMMEL J., DUMITRIU I., HOLTZ O.: Fast linear al-
gebra is stable. Numerische Mathematik 108, 1 (2007), 59–91.
3

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.: OBBTree:
A hierarchical structure for rapid interference detection. In Pro-
ceedings of the ACM Conference on Computer Graphics (1996),
pp. 171–180. 7

[GLM∗11] GLONDU L., LEGOUIS B., MARCHAL M., DU-
MONT G., ET AL.: Precomputed shape database for real-time
physically-based simulation. In VRIPHYS (2011), pp. 47–54. 2

[KHM∗98] KLOSOWSKI J. T., HELD M., MITCHELL J. S.,
SOWIZRAL H., ZIKAN K.: Efficient collision detection using
bounding volume hierarchies of k-DOPs. Visualization and Com-
puter Graphics, IEEE Transactions on 4, 1 (1998), 21–36. 6

[LAJJ14] LANGLOIS T. R., AN S. S., JIN K. K., JAMES D. L.:
Eigenmode compression for modal sound models. ACM Trans-
actions on Graphics (TOG) 33, 4 (2014), 40. 2

[Max08] MAXWELL C.: Sound Synthesis from Shape-Changing
Geometric Models. PhD thesis, University of California at Berke-
ley, 2008. 2

[OCE01] O’BRIEN J. F., COOK P. R., ESSL G.: Synthesizing
sounds from physically based motion. In Conference on Com-
puter Graphics and Interactive Techniques (2001), SIGGRAPH
’01, pp. 529–536. 2

[OSG02] O’BRIEN J. F., SHEN C., GATCHALIAN C. M.: Syn-
thesizing sounds from rigid-body simulations. In Proceedings of
the 2002 ACM SIGGRAPH Symposium on Computer Animation
(2002), pp. 175–181. 1, 2, 8

[PD00] PARLETT B. N., DHILLON I. S.: Relatively robust rep-
resentations of symmetric tridiagonals. Linear Algebra and its
Applications 309, 1 (2000), 121–151. 3

[PFF∗10] PICARD C., FRISSON C., FAURE F., DRETTAKIS G.,
KRY P. G.: Advances in modal analysis using a robust and multi-
scale method. EURASIP Journal on Advanced Signal Processing
2010 (2010), 7:1–7:12. 2

[PvdDJ∗01] PAI D. K., VAN DEN DOEL K., JAMES D. L., LANG
J., LLOYD J. E., RICHMOND J. L., YAU S. H.: Scanning phys-
ical interaction behavior of 3D objects. In Conference on Com-
puter Graphics and Interactive Techniques (2001), pp. 87–96. 2

[RF95] ROSSING T. D., FLETCHER N. H.: Principles of Vibra-
tion and Sound. Springer, 1995. 2, 7

[RHK14] RAUSCH D., HENTSCHEL B., KUHLEN T.: Efficient
modal sound synthesis on GPUs. In IEEE VR Workshop: Sonic
Interaction in Virtual Environments (SIVE) (2014), pp. 13–18. 1

[RL06] RAGHUVANSHI N., LIN M. C.: Interactive sound syn-
thesis for large scale environments. In Proceedings of the 2006
Symposium on Interactive 3D Graphics and Games (2006), I3D
’06, pp. 101–108. 1, 2, 3

[RYKL13] REN Z., YEH H., KLATZKY R., LIN M. C.: Audi-
tory perception of geometry-invariant material properties. IEEE
Transactions on Visualization and Computer Graphics 19, 4
(2013), 557–566. 2

[Sha96] SHABANA A.: Theory of Vibration II: Vibration of Dis-
crete and Continuous Systems, vol. 2. Springer, 1996. 1, 2

[SRL45] STRUTT J. W., RAYLEIGH B., LINDSAY R. B.: The
Theory of Sound. MacMillan, 1945. 2

[vdDKP04] VAN DEN DOEL K., KNOTT D., PAI D. K.: Interac-
tive simulation of complex audiovisual scenes. Presence: Tele-
operators and Virtual Environments 13, 1 (2004), 99–111. 2

[Zam12] ZAMBON S.: Accurate Sound Synthesis of 3D Object
Collisions in Interactive Virtual Scenarios. PhD thesis, Univer-
sita degli Studi di Verona, 2012. 3

c© The Eurographics Association 2015.


