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ABSTRACT

Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks
within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and
shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore,
validation of adapted computer vision methods proves to be difficult due to missing ground truth information.
Until today, there is no widely accepted software phantom in the community and existing software phantoms are
not flexible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat
tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to fill
this gap and provide a flexible tool for validation purposes in medical ultrasound image analysis. We discuss the
generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative
measures of the realism and accuracy regarding the resulting textures.
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1. INTRODUCTION

Ultrasound (US) imaging is one of the most challenging modalities for medical image analysis. Due to its
underlying physical principles, a variety of perturbations affect the generated images. One of the most significant
effects is the inherent physical noise, which leads to grainy textures in the imaged tissue. This so-called speckle
noise is characteristic for US data and plays an important role, e.g., in tissue classification.10,16

In ultrasound image analysis, the current focus of research has moved to appropriate mathematical modeling
of speckle and other physical effects.1,14,17,18 All these methods share the problem of validating the proposed
algorithms for automated processing and interpretation of medical US images, which is difficult for real data
due to missing ground truth information. To overcome this fundamental problem of validation some authors
test their methods on synthetic data generated with the help of software phantoms.1,17 The main advantage of
software phantoms is that ground truth information for the validation of image analysis methods is inherently
given by the defined data set. However, existing software phantoms either prove to be inflexible for evaluation
purposes due to tremendous computational effort,4 or show a lack of realism caused by simplifying assumptions
used for the simulation of the physical principle of ultrasound.12,21 For this reason, we propose an anatomical
ultrasound software phantom which offers a trade-off between realism and flexibility and enables its users to
generate physically correct US images for the validation of image analysis methods. Furthermore, we pay special
attention to the simulation time and achieve interactivity to further improve the user experience, while allowing
to dynamically change properties and parameters during the simulation.

2. RELATED WORK

Realistic simulation of ultrasound data is difficult, due to the complexity of the underlying physical principles
and their adequate approximation. This task has been investigated before and hence several proposed solutions
for ultrasound simulation exist in the literature. These can either be separated with respect to their specific
focus (accuracy, real-time interaction, realism), by the artifacts they aim to to simulate (structural artifacts,
speckle noise) or by the simulation approach they are based on (generative or interpolative). These different
aspects make it difficult to compare different algorithms and their respective simulation results qualitatively and
quantitatively to one another.



To underline this observation, we present a sample of the diversity of existing approaches by discussing their
respective advantages and shortcomings in the following. The most straightforward approach to simulate US
images is to solve the underlying wave equation numerically for a given geometry and specified conditions, e.g.,
the transducer geometry.4,6 All interactions between the US wave and soft tissue are simulated accurately and
thus very realistic results are obtained. The disadvantage of this approach is that, due to the computational
complexity, generating a single image can take up to several hours, which is rather impractical in many cases.
The authors in Ref. 6 present an alternative approach that models wave propagation using the Westervelt
equation. Additionally, the image generation pipeline, beginning with the pulse transmission, is also simulated
to achieve high realism. By solving the respective partial differential equations on the GPU, they are able to
reduce simulation time for a single image to less than 80 minutes. In Ref. 12 the simulation is focused on the
generation of a realistic speckle noise pattern. The geometry of the ultrasonic scan is taken into account to
additionally simulate the effects of axial and lateral resolution. However, acoustic shadowing and absorption
are not simulated which leads to rather unrealistic images. Nevertheless, this phantom has recently been used
for validation purposes.18 The authors in Ref. 20 use a geometrical acoustics model and simulate reflection and
transmission of ultrasound rays using acoustic impedance information obtained from CT scans.

We extended the latter approach for the purpose of medical personnel training.7 By approximating the wave
equation with rays, simulation of most of the ultrasonic wave’s interaction with tissue is possible, i.e., reflection
and transmission, acoustic shadowing, and reverberation. Furthermore, the correct modeling of the US beam
enables the simulation of the effects of lateral, elevational, and axial resolution, leading to comparably realistic
results. In related areas of research, e.g., ultrasonic tissue characterization, speckle noise has been studied by
various authors from a physical point of view, but to the best of our knowledge, their observations have not
being used yet in US image simulation to generate realistic speckle noise.

Although all previously discussed works aim for realistic US imaging simulation there is still no widely
accepted software phantom for the validation of image analysis methods today. This motivates us to propose an
anatomical software phantom with realistic speckle noise which provides a flexible simulation tool for validation
purposes in medical ultrasound image analysis.

3. METHODS

3.1 Physical Noise Models

When coherent light, e.g., a laser beam, encounters tiny particles smaller than the wavelength in a medium, it
gets scattered in different directions. Such reflected wavelets arrive at the observation point at different times
causing constructive or destructive interferences. The resulting pattern is called speckle noise and was first
observed and studied with the invention of lasers. Speckle is not an exclusive phenomenon of laser and can be
found in other forms of coherent imaging, including ultrasound.

Since scattering particles are often randomly distributed in the medium, speckle noise generation can be
treated as a random walk in the complex plane as proposed by several authors.2,3, 12 The models used here
assume that there exist a number of scatterers within a so-called resolution cell. This cell is the minimum unit
of detail that can be resolved by the transducers, this means that objects that share the same cell will be seen
as one. The amplitude A of the detected wave for a single resolution cell is the sum of all the contributions of
the reflected wavelets, i.e., the phasors. This can be expressed by:

A =
1
√
nt

nt∑
k=1

|ak|ejφk , (1)

where nt is the number of particles in the corresponding cell, and ak and φk are amplitude and phase of the kth
phasor, respectively. For each resolution cell, there exist a number of scatterers with random properties that
reflect the ray. These properties, e.g., size, density, and phase, differ between various models in the literature
and each model uses a specific probability density function for these random properties. We chose and evaluated
three different approaches which are closely related to the general backscattering model in (1), i.e., the ones
presented by Insana and Hall,5 Eltoft,2 and Narayanan et al.9



Figure 1. Noise textures generated with the Insana and Hall model using different parameters.

In the following we discuss the details for each of these backscattering models. For clarity, note that we
change from the calculation of amplitude A to the backscattered energy or intensity σ, following that intensity
and amplitude differ only by a scaling constant.3

3.1.1 Insana and Hall model

The model presented by Insana and Hall5 describes the backscattered energy σ from a single resolution cell by:

σ = IiCf
4γ0

nt∑
k=1

[
D6
k

nk
nt

F (f,Dk)

]
, (2)

where Ii is the incoming intensity and C is a constant equal to π4/36c4 with c being the speed of sound in the
medium. Furthermore, f denotes the simulated ultrasound frequency, nt is the total number of scatterers, and
nk is the number of scatterers with diameter Dk. Furthermore, F is the backscattered energy from a single
particle given by:

F (f,D) =

(
j0

(
2πfD

c

))2

, (3)

where j0 is the spherical Bessel function of the first kind and zeroth order. Finally, γ0 is the scattering strength
given by the medium and scatterer impedances Z1 and Z2, respectively, i.e.,

γ0 = 4

(
Z1 − Z2

Z1

)2

. (4)

This model assumes a uniform distribution of the scatterers throughout the medium. Hence, it is sufficient
to consider only the amount of scatterers disregarding the exact placement and alignment. For the model the
number of scatterers nt is realized via a Poisson distribution. The diameters of these scatterers are assumed to
be normally distributed. Thus, the only free parameters are the expected number of particles per resolution cell
and the mean and variance for the diameters of the particles.



Figure 2. Noise textures generated with the Eltoft model using different parameter settings.

Figure 1 shows different textures generated using this model for different parameter settings. It can be
observed how the total number of scatterers nt changes the density of the noise, while the variance affects the
contrast.

3.1.2 Eltoft

The model presented by Eltoft2 is based on Brownian motion and describes the backscattered energy σ by

σ = A +

nt∑
k=1

ake
jφk =

nt∑
k=1

βx + jβy + ake
jφk = X + jY , (5)

where n is the number of scatterers in the cell and ak and φk are the amplitude and phases of the kth scatterer,
respectively. As can be seen, the X and Y components can be treated as two Brownian motions with respective
drifts βx and βy. Furthermore, let Z be a fixed random variable, then X and Y can be expressed as:

X = βxZ +
√
ZNx , Y = βyZ +

√
ZNy ,

where Nx and Ny are standard normal distributed random variables. Following Ref. 2, we also assume that Z
follows approximately an inverse Gaussian distribution with mean δ and variance γ, expressed by:

γ =
√
β2
x + β2

y . (6)

The only free parameters for this model are the two values for the Brownian motion drifts βx and βy, and the
values for δ and α used for the distribution of Z. Apart from some examples, Ref. 2 does not give much further
insight about the values that these parameters should take or how they influence the pdf, therefore, we have
chosen and tested arbitrary values.

Figure 2 shows noise textures generated with different parameter settings. In comparison to the previous
model, the Eltoft model produces more homogeneous textures. Increasing the value of δ increases the contrast
of the noise, while the β values change the overall brightness.



Figure 3. Noise textures generated with the Narayanan model using different parameter settings.

3.1.3 Narayanan

For the Narayan model in Ref. 9 the received energy is also described as a sum of echoes from the scatterers in
the resolution cell. In this case, amplitude and position are varied from scatterer to scatterer to obtain the total
energy, which is given by:

σ =

nt∑
k=1

αk P

(
2xk
c

)
, (7)

where nt is the number of scatterers in the resolution cell. αk and xk are the amplitude and distance from the
transducer of the kth scatterer, respectively, and c is the speed of sound. Finally, P (t) is the transmitted pulse
given by:

P (t) = −t e−4β2t2sin(2πf0t) , (8)

where f0 is the simulated center frequency and β the frequency bandwidth of the ultrasonic pulse. In Ref. 9,
these values were set to 3.5MHz and 0.8MHz respectively. As our simulation allows the use of different values
for f0, we keep the same ratio and set β accordingly.

As in the case of Insana and Hall, scatterers are assumed to be uniformly distributed across the medium
and here the number of scatterers nt is also determined by a Poisson distribution. Additionally, the distance xk
follows a uniform distribution. Since the backscattered energy of each resolution cell is calculated independently
from each other, i.e., no multi-scattering is taken into consideration, relative positions of the scatterers within
each cell are used. Thus, xk takes values between 0 and 1. The amplitudes ak are assumed to have a Gamma
distribution in accordance with the models presented in Ref. 9 and Ref. 16.

Figure 3 shows different noise textures generated with the Narayanan model using different parameter settings
for the mean and variance of the Gamma distribution that defines the amplitudes of the scatterers and the average
number of scatterers in each resolution cell. It is clear here, that the total number of scatterers nt, as well as
the amplitude ak, determined by the values µ and σ2, have a direct influence on the density and intensity of the
generated noise textures.



3.2 Speckle Texture Simulation

Medical ultrasound image simulation approaches usually apply only one speckle noise model throughout the entire
image, ignoring the properties of individual tissue types. This is commonly realized by one of the following three
techniques: i) generating noise as random values from parametric distribution functions such as the Rayleigh
distribution13 and applying them pixel-wise in a post-processing step; ii) using speckle textures taken from real
ultrasound images;21 or iii) sampling a field of random scatterers.7,12 The last option offers most flexibility for
simulating US images, since it does not only allow using acoustic properties of the simulated underlying tissue
during the generation of scatterers, but also allows to adjust parameters such as their respective size, density,
and alignment as discussed above.

To integrate the physical backscattering models in Section 3.1 into our simulation pipeline, we use the following
methodology. The three described backscattering models are used to generate three dimensional textures which
can be sampled by a raytracing approach during simulation as will be described in Section 3.3. Each voxel of the
3D texture represents one resolution cell. The sampling takes place on a regular grid as the rays travel through
the scene. The sampled values are combined with the values of the resulting reflection or absorption at the
corresponding position, whenever necessary. The 3D noise texture sampling in combination with the ray-tracing
process creates the desired speckle pattern. Figure 4(a) shows different simulated speckle textures using these
three models with different parameter settings.

3.3 Geometrical Acoustics-based Ultrasound Simulation

In our previous work,7 we proposed an interactive and visually convincing US simulation for medical training
purposes. It includes simulation of physical effects such as shadowing and reverberation. Our simulation uses
a geometrical acoustics approach19 to approximate the wave-tissue interaction with energy-transporting rays
that can be reflected, refracted, absorbed or transmitted according to tissue properties. A virtual ultrasound
probe (VUSP) composed of an array of virtual transducers is modeled to determine the origin and direction of
the rays; multiple rays are created for each transducer in the VUSP. During a real US image acquisition, the
transducers are activated in sequence to sweep the area of interest. The intensity of the received echoes and time
between sent pulses and echoes is used to create a 2D B-mode image. This is emulated by the use of virtual
transducers that work independently in the scene, sending rays to sample it. As the rays travel through the
virtual anatomy, samples of the tissue, scatterer information and acoustic intensity are taken according to the
distance and direction of each ray to determine its propagating behavior. The information of all rays is finally
combined to create the simulated image. For technical details we refer to Ref. 7.

The simulation process incorporates a parameterizable model of the ultrasonic beam and virtual probe. The
acoustic pressure field of the focused ultrasonic beam is pre-calculated and stored as a 3D texture, which is then
used to map the energy of the traveling rays. The axial, lateral and elevational resolutions of the transducers in
the VUSP are also taken into account to generate the simulated images. The VUSP and the beam profile are
parameterized and can be changed to model different US devices with, for example, different frequencies and
geometries. Figure 4(c) shows a simulated 2D US B-mode image of the heart phantom in an apical four-chamber
view with different speckle textures for muscle, blood, heart and septum using the Insana backscattering model.5

Note that the simulated acoustic shadowing is caused by the lung that obscures part of the left ventricle. Another
realistic detail is given by the highly reflective muscle tissue in the septum of the left ventricle.

3.4 Anatomically Correct Heart Geometry

The 4D extended cardiac-torso (XCAT) software phantom15 is widely used for validating medical image analysis
methods. It is based on segmentations from the Visible Human project as well as tagged MRI and gated CT data
and provides detailed whole-body voxel data. Furthermore, respiratory and cardiac motion can be simulated.
Thus, even ground-truth motion information is available from the phantom, which enables, e.g., evaluation of
motion estimation methods. The XCAT phantom can be used as anatomically correct geometry to various
simulations, e.g., PET, SPECT, or CT data. To the best of our knowledge, it has not yet been used for medical
ultrasound imaging. Figure 4(b) shows an enhanced geometry of a human heart from the XCAT phantom.
Distinct values have been assigned to each tissue type, e.g., the myocardium, lungs, and ribs. This segmentation
is used as input for the simulation pipeline described in Section 3.3 and can be used to select realistic parameter
settings.



Figure 4. a) Simulated speckle textures for different parameter settings using the backscattering models proposed by:
Insana and Hall (1), Eltoft (2), and Narayanan et al. (3). b) Example slice of the heart geometry taken from the XCAT
phantom. c) Corresponding US image simulation using the Insana model.

Table 1. Values of p for the KS test to compare generated speckle before (Model) and after raytracing (Simulation) to the
Nakagami distribution. Values in bold face indicate that the null hypothesis is rejected.

Insana Eltoft Narayanan
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Simulation 0.1086 1.0 1.0 0.0012 0.9995 0.9883 1.0 0.8284 0.8284
Model 0.0694 0.4010 < 0.0001 < 0.0001 0.1342 0.9970 1.0 0.6858 0.0430

4. RESULTS

As described in Section 3.4, by using the XCAT phantom, we obtain ground truth information required for
validation of image analysis methods and a highly detailed geometry for the simulation. Together with physical
noise modeling, 3D beam modeling, and the geometrical acoustics approach to simulate US propagation and
interaction with tissue, this enables the generation of very realistic US images. Since configuration of all relevant
parameters and the different generation stages is possible, we obtain a flexible tool that enables the simulation
of diverse scenarios with a variety of geometries and US properties.

Although the results of our previous work were rated as convincing by medical experts, the realism of
the simulated US images was limited, on the one hand, by the high real-time requirements needed for high
interactivity during training sessions, and on the other hand, by the limited choice of noise models used to
generate the textures of different tissue types. For the purpose of validating image analysis methods, the real-
time constraint is less strict, and hence we are able to incorporate even more realism and flexibility into the
simulation by adding more rays for each transducer. Additionally, by supporting parameterizable physical noise
models, we can simulate a wider range of speckle textures of the different tissue types.

To quantitatively assess the realism of the used speckle models we performed statistical experiments, which
are described in the following. First, for each model and set of parameters, we created a number of 3D scattering
textures under the assumption that the particles are distributed uniformly across the volume. These volumes
were sampled using our raytracing algorithm described in Section 3.3 to create a simulated 2D B-mode image.
The gray values of pixels were classified into bins to create an image histogram. Subsequently, we performed a
Kolgomorov-Smirnov (KS) test to measure how well these fit with the Nakagami distribution, which provides a
general model for speckle noise.11,16 The same models were used to generate 2D B-mode images directly (without
sampling from our raytracer) using the same parameters as in the sampled case. The same goodness-of-fit tests
were applied to these images and we compared the results of both cases against each other.

The results of the experiments confirm that using only the theoretical backscattering models to generate
speckle noise is not enough to obtain realistic noise. Consequently, adding speckle to simulated images in a
post-processing step with noise filters and ignoring the image formation pipeline is rather suboptimal. This is
also partly demonstrated by the results shown in Ref. 12. Figures 5, 6 and 7 exemplarily show the density plot
of the gray values of the noise texture created using the three models respectively, with different parameter sets,



Figure 5. Histograms and Nakagami fits for the Insana model with different parameter sets. Top: raw noise models, bot:
sampled noise models.

Figure 6. Histograms and Nakagami fits for the Eltoft model with different parameter sets. Top: raw noise models, bot:
sampled noise models.

before (top) and after (bottom) being sampled by our ray-tracing simulation. Table 1 shows the results of the KS
tests for the histograms of the simulated speckle using the plotted data. It can be seen that the pvalue for the
simulated speckle is higher that that of the raw models. The values in bold face indicate the lower pvalues, where
the null hypothesis is rejected. From this, we can conclude that the Nakagami distribution fits the simulated
speckle noise better. As can be seen, from a statistical point of view, the combination of the backscattering



Figure 7. Histograms and Nakagami fits for the Narayanan model with different parameter sets. Top: raw noise models,
bot: sampled noise models.

model with our simulation pipeline yields highly realistic speckle patterns.

5. CONCLUSION

In this work we presented a flexible software phantom that allows simulation of medical ultrasound images
incorporating realistic speckle noise models. Three factors contribute to the overall realism of the speckle
patterns: i) 3D backscattering fields are created using established physical models; ii) the sampling algorithm
uses a realistic focused 3D beam model and iii) for each type of simulated tissue a different backscattering field is
created. Furthermore, we presented statistical data to support our claim that the generated speckle is not only
visually realistic, but can also be fitted with theoretical models and hence used for validation of image analysis
methods. In particular, the resulting speckle noise pattern after simulation can be described by a well-known
Nakagami probability density function.
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