
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2010)
J. Bender, K. Erleben, and M. Teschner (Editors)

3D Sketch Recognition for
Interaction in Virtual Environments

D. Rausch1 and I. Assenmacher1 and T. Kuhlen1

1Virtual Reality Group, RWTH Aachen University, Germany

Abstract
We present a comprehensive 3D sketch recognition framework for interaction within Virtual Environments that
allows to trigger commands by drawing symbols, which are recognized by a multi-level analysis. It proceeds in
three steps: The segmentation partitions each input line into meaningful segments, which are then recognized
as a primitive shape, and finally analyzed as a whole sketch by a symbol matching step. The whole framework
is configurable over well-defined interfaces, utilizing a fuzzy logic algorithm for primitive shape learning and a
textual description language to define compound symbols. It allows an individualized interaction approach that
can be used without much training and provides a good balance between abstraction and intuition. We show the
real-time applicability of our approach by performance measurements.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Methodology and
Techniques—Interaction Techniques Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—
Virtual Reality; Pattern Recognition [I.5.5]: Implementation—Interactive Systems;

1. Introduction

The development of suitable interfaces for immersive envi-
ronments is an ongoing challenge. In contrast to 2D envi-
ronments on desktop systems, no commonly accepted inter-
face approach like the WIMP metaphor exists. Especially
for constructive and scientific applications, a good mixture
between intuitive, natural interaction and artificial guidance
and controlling structures is required. A pen-based interface
is a suitable approach for this, since a drawing can quickly
communicate ideas, hold contextual information and instruc-
tions for the reader. For example, in an architectural context,
it is quite common to sketch ideas and construction hints on
plans or newly build walls.

This proposes the use of a sketch-based interface where
the user can draw a sketch, which is then recognized and
an associated command is executed. The command is sup-
plied with additional information from the drawing (see fig-
ure 1), so that for example new objects can be created such
that their the location, rotation, and scale matches the size,
position, and orientation of the sketch. Since drawing is a
natural and intuitive task, sketches allow for an easy oper-
ation, while their lack of precision complies to the inaccu-

rate nature of initial design phases and review sessions. One
major advantage is the non-intrusiveness of the approach,
since the sketch-based interface is fully passive until the user
starts to draw, and it only requires a small input device with
a single button. This way, it is especially suited for applica-
tions where the user only performs commands now and then,
while focusing on other tasks like exploration.

To use sketch-based interaction in a Virtual Environment
(VE), a recognizer is required to interactively analyze and
interprete the input drawings. For more complex sketches
consiting of several strokes, this is a challenging task.
We present a multi-level recognition approach for three-
dimensional sketches that can reliably match moderately
complex symbols in real-time, and enables a fluent and non-
intrusive interaction.

The remainder of this paper is structured as follows. We
will start with an overview of related work in the field.
The general concepts and design requirements of the sketch
recognition system are presented in section 3. Its three main
components are then explained in more detail in the follow-
ing sections. An enhanced stroke segmentation algorithm
splits lines into meaningful segments (see section 4), which

c© The Eurographics Association 2010.

D. Rausch & I. Assenmacher & T. Kuhlen / 3D Sketch Recognition forInteraction in Virtual Environments

Figure 1: The sketch-based interface allows to draw prede-
fined symnols that are recognized and translated into com-
mands. The example shows a sketched symbol (left) to rotate
an object around the drawn axis (right).

are then classified using a fuzzy logic-based primitive shape
recognizer (section 5). After that, we describe an algorithm
for the efficient matching of compound sketches, again using
fuzzy logic (see section 6). A discussion of our findings, in-
cluding a preliminary evaluation and performance analysis,
concludes this paper.

2. Related Work

A commonly used method for interaction in a VE is the
recognition of hand postures and gestures where the pose
and movement of the user’s hand is interpreted to interact
with the system [LaV99]. While this aproach is very natu-
ral, the high number of degrees of freedom of the hand make
a reliable recognition difficult. Furthermore, recording the
state of the hand requires either a camera array and a compu-
tationally expensive image analysis, or worn hardware like
an instrumented glove that poses ergonomic problems. Pen-
based input can be seen as a simplified form of hand ges-
tures, where instead of the whole hand only a single point –
the tip of a finger or a pen – is examined.

For 2D interfaces, pen-based input methods have been
used for some time now. An early representative is SKETCH
[ZHH96] which uses simple drawn symbols to control a
modeling application. Another popular sketching applica-
tion is Teddy [IMT99], where the user can draw a silhou-
ette to create roundish free-form objects, like stuffed ani-
mals. This application combines free-form sketch interpre-
tation with a basic gestural interface, and thus only requires
a minimal GUI for system control.

For simple pen gestures, fuzzy logic is a frequently used
tool for fast and efficient recognition [Rub91, EBSC99,
QWJ00,FPJ02], while other approaches like Hidden Markov
Models are sometimes used for more specialized tasks
[KEA03]. These can detect simple gestures – often con-

sisting of only a single stroke – and allow for only a lim-
ited set of different shapes. A comparative evaluation of
some pen gesture recognizers is presented by Schmieder et
al. [SPB09].

Recently, algorithms for sketch recognition have been de-
veloped that can recognize not only single symbols but com-
plex sketches consisting of many different symbols. These
can for example be used to analyze hand-drawn electric cir-
cuit diagrams or relation diagrams in order to create rec-
tified drawings of them. Due to the increased complex-
ity of the recognition, artificial intelligence approaches like
Bayesian Networks [AD04, SD07], Hidden Markov Models
[SD04, SD05] or combinatorial models [HPW07] are used.
However, while these complex sketch recognition systems
are capable of parsing large drawings, they are usually not
fast enough for real-time interaction.

Some Virtual Reality (VR) applications use 2D pen ges-
tures to enrich their interfaces. However, recognition of truly
three-dimensinal pen gestures or sketches is rarely used. En-
carnação et al. [EBSC99] present a fuzzy logic-based rec-
ognizer for 3D single-stroke pen gestures. Using this recog-
nizer, they developed a sketch recognition architecture for
VEs [BES00] that can be combined with additional modali-
ties like speech input. Compound sketches consist of several
single-stroke gestures and are combined using a context free
grammar. However, the grammar only specifies the number
of occurring gestures, so that ambiguity between symbols
with the same set of primitives still needs to be resolved.
For this, it appears that hand-tailored decisions are used for
a specific set of symbols, and is probably not easily extensi-
ble. Additionally, no segmentation is used so that each prim-
itive has to be drawn with an own stroke. Another limitation
arises from the gesture recognizer that uses a fixed reference
frame for its computation. While this works for 2D sketches
or environments where the user does not move, it fails as
soon as the user can walk around and draw sketches in ar-
bitrary directions. Thus, the presented applications of their
framework use a handheld pad as drawing plane, effectively
reducing the gestures to two dimensions.

3. Sketch Recognition Framework

The overall goal of the presented recognition system is to
analyze input sketches of a user and translate them into
a corresponding command. An overview over the general
recognition process is shown in figure 2. As a basis of in-
put, movement trajectories are given as strokes to the recog-
nizer. A stroke can contain an arbitrary number of points col-
lected by the tracking hardware, and recording is triggered
application-side, for example by a button press. The recog-
nizer then proceeds in several steps. First, the segmentation
analyzes the input stroke to detect corner points, which are
then used to split the stroke into smaller segments. After-
wards, the primitive shape recognition calculates a matching
of primitives for each of the segments. Both stages are per-

c© The Eurographics Association 2010.

D. Rausch & I. Assenmacher & T. Kuhlen / 3D Sketch Recognition forInteraction in Virtual Environments

Figure 2: Overview of the stages of the sketch recognition process. Continuous arrows represent the data flow through the
system, while dashed arrows represent the use of additional resources. The gray area defines the boundary of the sketch recog-
nition framework, and users and maintainers only access it over well-defined interfaces. The processing of an example sketch
is shown on the left, indicated by dashed grey arrows.

formed once a new stroke is added, and the results are stored
together with earlier strokes, forming a compound sketch.
This sketch is analyzed by the symbol matching, which com-
pares it to predefined symbols in a database, trying to find a
match. If the compound sketch matches a predefined sym-
bol, the according command is called at the command inter-
face and contextual information about the sketch is provided
as parameter. The sketch recognition framework can be con-
figured and adjusted to a specific domain of application us-
ing abstract interfaces, the primitive shape trainer, symbol
definition language, and command interface.

3.1. 3D Sketching

At first, three-dimensional sketches seem to be inferior to
two-dimensional ones. Since drawing is usually performed
on paper and thus two-dimensional, 3D sketching is less nat-
ural and intuitive. Furthermore, both the visual sense and the
physiology of the hand make sketching along the depth di-
rection rather imprecise, which is made even worse by the
lack of a supporting drawing plane. For these reasons, it is
most common to use 2D sketch recognition not only for 2D
interface, but also for applications in VR by either using a
carried pad to draw on, or by projecting the sketch onto a 2D
plane.

Despite the problems of unsupported 3D sketches, we feel
that they have benefits encouraging their use for VR inter-
faces. First of all, one of the main problems, namely the lack
of precision when drawing unsupported 3D sketches, can be
accepted since a sketch is not meant to stay, but only trig-
gers a command, and therefore the imprecision only mat-
ters for the recognizer and the extracted parameters. Addi-
tionally, 3D sketches only require a 3DOF or 6DOF input

device, which is generally available in a VE and is easy to
handle. This way, the user can freely move around in a VE,
and does not have to wear bulky input hardware. In contrast,
a supporting plane would either require a fixed position of
the user, as in a fishtank VE, or a carried pad that he has
to hold accordingly, requiring additional and uncomfortable
hardware that either has to be carried around or requires a
place to put down between uses. Furthermore, one of the
main advantages of sketches is that they do not just trigger
commands, but also provide additional parameters extracted
from the drawing, like the position and size of a new object.
These parameters are directly available in 3D, while the use
of 2D sketches would require additional methods to resolve
the missing degrees of freedom.

All in all, we feel that the use of 3D sketches to control an
interface is a good option. While GUI-based interfaces are
in general faster to use and do not require much learning,
the sketch-based approach has the advantage of being fully
passive when not being used, therefore maintaining the im-
mersion. This makes this interface suitable for tasks that are
not continuously performed, like architectural modifications
during an exploration of the scenery.

3.2. Design Aspects

While designing the sketch recognition framework, we have
found several important aspects that needed special consid-
eration, resulting from the special requirements of a sketch-
based interface. As a summary, we pose the following re-
quirements.

• 3D Drawing. The sketch interface is supposed to handle
truly three-dimensional sketches that are drawn unsup-

c© The Eurographics Association 2010.

D. Rausch & I. Assenmacher & T. Kuhlen / 3D Sketch Recognition forInteraction in Virtual Environments

ported and free-handed. Therefore, the recognition sys-
tem needs to handle the additional degrees of freedom,
and must be tolerant to increased drawing inaccuracies.

• Compound Sketches. In order to provide reliable recog-
nition results, it is mandatory that symbols are suffi-
ciently diverse. For pen gestures consisting of only a
single drawn stroke, this obviously limits the number
of available commands symbols. Therefore, we support
compound sketches that describe more complex shapes as-
sembled from several primitive elements. However, com-
plex symbols usually take longer to be drawn by the user,
making the interface slower. Additionally, despite the bet-
ter iconography, complex symbols may be more diffi-
cult to memorize. Still, we feel that the advantages of
compound sketches for multi-domain applicability justify
these shortcomings, since more different symbols can be
created and can better match a desired prototype iconog-
raphy.

• Customizability. Depending on the domain of applica-
tion, different sets of commands and their corresponding
symbols are required. Clearly, the symbols to control an
architectural construction session are different to those of
a scientific visualization application, and even each user
should be able to define her own set of symbols and se-
mantics for every application. This appeals to the icono-
graphic memory and associative thinking of individual
users, but raises the need for suitable software interfaces.
It is necessary to provide an easy way to customize the
symbol database and the respective triggered commands.
We developed interfaces that allow to specify the sketch
recognition interface by defining primitive shapes, sketch
symbols, and the commands to be executed.

• Drawing Styles. A problem that is also known from the
recognition of hand gestures and speech is the variation
between individual users. Since each person draws differ-
ently, the resulting sketches may be quite different for the
same symbol. This problem is often overcome by training
the system to each new user to adopt to her style. How-
ever, these training sessions are often bothersome when
using the system for different users, and thus we instead
tried to tailor the recognition process to be general and
variable enough to handle the drawing styles of different
users. To achieve this, we decided to use a variable sym-
bol definition language, a stroke segmentation algorithm,
and a primitive shape recognition based on global features
only.

• Real-Time Constraints. An important aspect of VR in-
terfaces is their real-time constraint. When triggering a
command by sketching a symbol, the response should oc-
cur without noticeable delay, and therefore the recognizer
has to provide its results fast enough.

3.3. Symbol Definition

In general, there are different approaches to create symbol
definitions. One can represent them by a fixed set with hand-

tailored parameters, but this is obviously hard to maintain
and adapt to new use-cases. A more versatile approach is the
use of training sets, where examples are provided to a learn-
ing system that then extracts a symbol representation. This
is a suitable approach for simple gestures, but often fails for
more complex ones. Additionally, the created definitions are
often user-specific and thus require special training for each
new person. A way to define more complex symbols is the
use of a descriptive definition language that allows a main-
tainer to easily create new symbols. A prominent example is
LADDER [HD05], which allows to create 2D symbols from
basic shapes.

Our recognition framework detects low-level primitives
and compound sketches in separate modules, so that it also
uses individual strategies to define the objects. For the prim-
itive shapes, we developed an optimization-based parameter
learning algorithm described in section 5. While we expect
the primitive shape trainer to be used seldom since the num-
ber of basic element types is limited, the definition of high-
level compound symbols is performed more frequently. For
this, we developed a textual definition language similar to
LADDER, where symbols can be assembled from several el-
ements and constraints. Elements define the primitive shapes
in the symbol, like straight lines or circles, while constraints
describe how these elements are assembled by restricting
their relative size, position, or orientation. Typical examples
for constraints are PARALLEL, SAME_LENGTH or MEET,
and each constraint is prefixed with a qualifier – SLIGHTLY,
MOSTLY, or VERY – that specifies how strongly it has to be
fulfilled, allowing for a finer control over the symbol’s final
shape. Furthermore, constraints can be inverted or marked as
optional. By allowing optional elements and different vari-
ants for a symbol, it can be defined to be drawable in differ-
ent ways, which helps to compensate for different drawing
styles of users.

In addition to the symbol definition, means to execute a
command after a successful recognition are needed. For this,
a software interface is defined, which passes a recognized
sketch as well as parameters extracted from the drawing.
The commands are free to interpret the properties for exe-
cution either globally on sketch level, or locally on the level
of individual segments. For example, a command can use the
orientation of the sketch as a whole, or the orientation of a
single element in the sketch as a rotation axis.

3.4. Fuzzy Logic

We decided to use fuzzy logic for both the primitive shape
and symbol recognition steps. Fuzzy logic is an extension
of standard logic that allows to handle uncertainty. In tra-
ditional boolean logic, expressions are either true or false,
while fuzzy logic has a continuous range of truth values
that may lie anywhere between zero (false) and one (true).
This helps to deal with the imprecise nature of gestures and
sketches. Fuzzy sets define a sliding degree of membership

c© The Eurographics Association 2010.

D. Rausch & I. Assenmacher & T. Kuhlen / 3D Sketch Recognition forInteraction in Virtual Environments

Figure 3: An example for a piecewise linear membership
function µ(x) described by a fuzzy range π = [a,b,c,d].

(DoM) in the range between zero and one, which gives a
definition of how strongly a value belongs to the set. The
DoM of a value x for a given fuzzy set can be calculated by
a membership function µ(x) that maps each input parameter
to a value between zero and one. A common approach is the
use of a piecewise linear function forming a trapezoid, which
we define by a fuzzy range using four values π = [a,b,c,d]
(see figure 3). This function can be stored efficiently, and its
easy evaluation is beneficial under real-time constraints.

4. Stroke Segmentation

When assembling a complex sketch from several primitive
shapes, it is necessary to find parts of the sketch that cor-
respond to individual primitives. Some sketch recognition
approaches simply assume that the whole sketch consists of
only one stroke, or that each basic element is drawn with
an individual line. However, this strongly limits the drawing
styles and comfort, as users tend to create several primitive
shapes in a single stroke. As a consequence, we feel that it
is necessary to segment each input stroke before performing
the actual recognition.

The segmentation detects feature points that partition a
stroke into meaningful parts, and uses them to split the stroke
into segments. For example, it is then possible to draw a
square with one stroke forming all four sides at once, or with
multiple strokes each containing one or more segments. This
gives the user individual freedom when drawing symbols,
and makes the whole recognition less susceptible to varia-
tion in drawing styles. However, this does not allow feature
accentuation, for example dashing or over-sketching, as sup-
ported by [FPJ02]. For sketch-based interaction, this is not
necessary because the drawing are supposed to execute com-
mands instead of modeling visual effects.

The segmentation step is preceded by smoothing the in-
put point set with a simple averaging filter to reduce the
effects of noise. Additionally, information like curvature,
speed, and arc length is computed for each point. Then,
the corner detection finds features in the processed input.
As an initial step, we use a corner detection algorithm
based on speed and curvature information, similar to exist-
ing approaches [QWJ00, FMRU03, SD06]. Intuitively, cor-
ners have a high curvature, and speed serves as an additional

(a) (b) (c) (d)

Figure 4: When using only local information (a) it is hard to
decide if a corner point should be set. Despite differences in
the global shape, either both or none of the corners can be
found (b). By using linearity as global information about the
line (c), a reliable feature point detection can be achieved
(d).

measure since humans usually draw corners more carefully
and thus slower. For each point pi in the line, a quality mea-
sure q(pi) is calculated from its curvature c(pi) and speed
s(pi):

q(pi) =
c(pi)−mc

c
+ is ·

ms− s(pi)

s
where c and s are the average values of speed and curvature
over the line, is is the relative influence of speed onto the
result, and mc and ms are threshold values for curvature and
speed. If the quality measure of a point is above zero and
also has the highest quality in its local neighborhood, it can
be accepted as a corner point.

However, this basic approach turned out to be insufficient.
Only local information is used, but the decision to accept a
corner point might depend on the global shape of a curve
(see figure 4). Linearity of the final segments provides such
global information, which we use to improve the quality of
the segmentation. Intuitively, a corner is more likely to ap-
pear at the end of a straight segment than on a curved one,
so that we prefer feature points that are neighbored by linear
segments.

Thus, we enhanced the corner point detection to utilize
the linearity. Initially, a set of candidate points {ci} is com-
puted based on speed and curvature values, where the pa-
rameters is = 0.1, ms = 0.8s̄, and mc = 33◦ are empiri-
cally chosen. Each pair of adjacent candidates ci and ci+1
enclose a line segment li, for which the linearity is com-
puted from the arc length arc(li) and the endpoint distance
by lin(li) =

arc(li)
|ci+1−ci| . A straight line evaluates to lin(li) = 1,

while larger values propose a curved shape. Since we want
to prefer candidates on linear segments, we calculate a bonus
factor bi = 1− lin(li)−1

max_lin−1 for the segment if lin(li) is smaller
than a maximal value max_lin, otherwise bi is set to zero.
We empirically set max_lin = 1.3 for good results.

c© The Eurographics Association 2010.

D. Rausch & I. Assenmacher & T. Kuhlen / 3D Sketch Recognition forInteraction in Virtual Environments

Based on these linearity values, an artificial curvature ca
is calculated for each candidate point:

ca(ci) = c(ci)+(bi−1 +bi) ·q1 +bi−1 ·bi ·q2

Here, q1 = 30◦ and q2 = 70◦ are bonus curvature values
that are applied if the line segments li and li+1 adjacent to
the candidate ci are linear. There are two different curvature
bonuses, a smaller one that is given based the individual lin-
earity of each neighbor, and a larger one that only applies if
both adjacent segments are linear.

The artificial curvature values are then used to re-compute
the quality measure q(ci) of each candidate point, but this
time using a higher curvature threshold mc = 90◦. This way,
only points that initially had a high enough curvature or that
received a sufficient linearity bonuses are kept, forming the
new set of feature points. If a candidate point is discarded
this way, the linearity bonus of adjacent candidates no longer
depends on the discarded point and has to be reevaluated.
Therefore, the corner point detection is repeated with the re-
duced set of candidate points until no more points are dis-
carded. The final set is accepted as corner points and is used
to split the input lines into segments.

The extension of the approach significantly increases the
reliability of the segmentation over the speed-and-curvature-
based version. Points on curves that only show a high local
curvature are reliably discarded, while sharp breaks between
two curved segments are still detected.

5. Primitive Shape Recognition

Once meaningful segments are identified, they are classi-
fied by the primitive shape recognition step that compares
them to predefined shape prototypes. A set of DoMs is com-
puted for each segment, storing the matching result for ev-
ery shape. Thus, a segment is matched to different primi-
tive shapes simultaneous, allowing it for example to count
as both a circle and an ellipse.

5.1. Shape Classification Features

To differentiate between shapes, it is necessary to use spe-
cific classification features. A main design goal of the rec-
ognizer is to allow usage by different users without train-
ing it individually. For this reason, we only use parameters
that are universal enough to describe the general form of the
shapes, and not the way they are drawn. Therefore, we ob-
serve global geometric properties of the stroke, for example
the start- and endpoint, center of gravity, or bounding box.

In an immersive VE it is necessary to determine a suitable
reference frame to calculate the global properties. Using the
same fixed reference frame, like the world coordinate sys-
tem, for all segments does not work because transformations
of a stroke relative to the global coordinate system result
in different geometric properties. For example, two identi-
cal shapes rotated by 90◦ to each other would be recognized

as different. It is thus necessary to define a frame of refer-
ence for each segment that is independent from its global
transformation. For this, we compute the Oriented Bound-
ing Box (OBB) [Got00] of each segment, which forms the
local reference frame for the calculation of the geometric
primitives. OBBs are well-suited for this since they align to
the drawn segments and are independent of the global trans-
formation, and thus enable the recognition to work in 3D
environments.

Still, some of the properties describe absolute values that
are not directly usable, like the x-extent of the OBB. To cre-
ate relative features, we combine different properties, for ex-
ample instead of using the absolute x-extent, we divide it by
the OBB’s diagonal extent to receive a ratio. A total of 24
features is used for the classification:

• Size of the three axes of the OBB, normalized by its diag-
onal

• Size ratios measuring the OBB’s x-y, x-z, and y-z ratios
• Arc length of the segment, normalized by the OBB diago-

nal
• Relative movement along the OBB axes
• Endpoint distance normalized by the OBB diagonal
• x-, y-, and z-coordinates of the startpoint, endpoint, and

center of gravity, relative to the corresponding OBB axis
• Distance of the startpoint, endpoint, and center of gravity

to the OBB center, normalized by the OBB’s diagonal
• Average distance from center of gravity, normalized by

the diagonal size of the OBB

For an input stroke, these values are stored in a feature vector
x of size 24, which can then be used to classify the stroke.

5.2. Shape Recognition

Given the feature vector x of an input segment, we want
to classify this stroke by comparing it to a primitive shape
type. For this, a shape is defined by its property defini-
tion p = (πi,ri)i∈{1,...,24}, where for each feature i, πi =
[ai,bi,ci,di] is the fuzzy range that defines the membership
function µi(x) of the corresponding fuzzy set, and the rel-
evance value ri ∈ [0,1] is used to determine how strongly
the specific parameter influences the recognition result. This
relevance value allows a modeling of dominant features for
sketch classification, so that only those properties that actu-
ally help in distinguishing a shape influence the recognition
result. Since five values are stored for each feature, p is of
dimension 120.

For the input features x, we can now calculate the DoM
fp(x) that describes how well the segment resembles a prim-
itive shape defined by p. A local matching degree for each
feature xi is calculated from µi(xi), and weighted by ri.
These local degrees are multiplied to find the total DoM fp.

fp(x) =
24

∏
i=1

1− ri · (1−µi(xi))

c© The Eurographics Association 2010.

D. Rausch & I. Assenmacher & T. Kuhlen / 3D Sketch Recognition forInteraction in Virtual Environments

5.3. Shape Learning

While it is now possible to recognize a segment, we still need
a way to create primitive shape definitions. We started off us-
ing a fixed set of basic shapes, where ranges and relevance
values were determined manually, but this did not allow to
individualize the system further. Thus, we introduce an ap-
proach to define new shapes using an example-based learn-
ing algorithm.

The system learns new shapes by providing it several ex-
ample strokes, from which it derives a suitable description
automatically. The set of examples S includes both positives
and negatives, i.e., strokes that should be recognized as the
desired shape and those that should not. Partial matches can
also be given to the system by specifying a numeric DoM,
for example to describe that an elliptic shape is somewhat
similar to a circle, but does not fully match.

An example s ∈ S consists of its geometric features xs and
its desired DoM ds. Initially, a rough estimate for the shape is
created by setting each fuzzy set to include all parameters of
the positive examples, and each relevance value is set to 0.5.
An iterative optimization algorithm then refines the values of
the shape description by optimizing an error function φ(p)
that measures the agreement of the current shape with the set
of examples.

φ(p) = ∑
s∈S

(
ds− fp (xs)

)2

This function is minimized using the method of steepest de-
scent. For this, the gradient of the error function ∇φ(p) =(

∂φ(p)
∂p1

, . . . ,
∂φ(p)
∂p120

)
is needed. We calculate ∇φ(p) using

a finite difference to approximate the derivatives ∂φ(p)
∂pi

≈
φ(p+ε·ei)−φ(p)

ε
with a small offset ε along the unit vector ei.

Once ∇φ(p) is calculated, it is used to update the shape def-
inition to create a better approximation.

p← p−α ·∇φ(p)

The step width α ∈ (0,1] is determined by linear search
along the gradient’s direction. During iterations, φ(p) con-
verges toward a (local) minimum that defines the properties
of the shape description.

However, a simple application of this approach does not
succeed since the used membership functions µi(x) have
large areas with a derivative of zero. To overcome this prob-
lem, we use a modified membership function for the op-
timization, where an exponential fall-off on the edges and
small linear slopes in the center ensure that its derivative
is always non-zero. Additionally, the optimization may pro-
duce invalid shape description by creating a relevance value
outside of [0,1] or a fuzzy range that does not conform the
condition a < b < c < d. Therefore, after every update the
validity of the shape description is checked and, if necessary,
reestablished by clamping to legal values.

A small set of examples – normally about 10 – is usually

Figure 5: The shape recognizer can distinguish even simi-
lar shapes like an ellipse, an eight, and the body of a violin
(left). However, problems occur if the differences are only
visible in local features, as for a zig-zag and a wave (right).

sufficient to calculate a shape description. The optimizer au-
tomatically determines important features for classification,
which are usually only a few (2 to 8), while most other rel-
evance values are zero. In most cases, the presented learn-
ing algorithm manages to find a good result. However, the
method of steepest descent only converges to a local mini-
mum, so that it may happen that no good approximation can
be found. In our experience, this only occurs rarely, and in
these cases it is usually sufficient to just provide more exam-
ples. Global optimization algorithms, like simulated anneal-
ing, could be used instead to find a globally optimal solution
at the expense of a higher computation time.

With the shape learning and the classification features as
presented in section 5.1, a variety of shapes can be separated.
The depicted approach can reliably distinguish even rather
similar gestures, like an ellipse, eight, and violin body. How-
ever, since only the global geometry of a stroke is examined,
difficulties arise when shapes only vary by local features
such as corners (see figure 5). The preceding segmentation
step splits input lines with local feature points into several
segments, which in turn can be represented by a compound
symbol, so this does not pose a problem.

6. Symbol Matching

When a new stoke has been processed, it is added to a com-
pound sketch. Now, the symbol matching performs a high-
level recognition and computes a vector of DoMs that de-
scribes the similarity of the sketch with all predefined sym-
bols in the database.

6.1. Matching Algorithm

The actual matching algorithm is performed separately for
each symbol in the database and computes a DoM for a set
of classified segments. Initially, it tests if the number of seg-
ments is valid, and evaluates global constraints based on the
OBB enclosing the sketch. This allows to reject unsuited
sketches quickly without much computational effort.

Afterwards, the algorithm assigns the segments of the
sketch to the symbol elements and checks the matching.
However, this assignment is not trivial since the recogni-
tion should be successful independent of different drawing

c© The Eurographics Association 2010.

D. Rausch & I. Assenmacher & T. Kuhlen / 3D Sketch Recognition forInteraction in Virtual Environments

f u n c t i o n CalculateSymbolDoM (segmen t s)
i f i n v a l i d number o f segmen t s re turn 0 ;
dom = 1 ;
f o r each g l o b a l c o n s t r a i n t c

dom ∗= E v a l u a t e C o n s t r a i n t (c) ;
i f dom < p r u n e _ t h r e s h o l d re turn 0 ;
M a t c h i n g R e c u r s i o n (0 , segments , dom) ;
re turn L o a d B e s t C o n f i g u r a t i o n () ;

end

f u n c t i o n M a t c h i n g R e c u r s i o n (r e c u r s i o n _ d e p t h ,
a v a i l a b l e _ s e g m e n t s , dom)

i f (a v a i l a b l e _ s e g m e n t s == {}) do
p r u n e _ t h r e s h o l d = dom ;
S t o r e B e s t C o n f i g u r a t i o n () ;

end
e l e m e n t = GetElement (r e c u r s i o n _ d e p t h) ;
f o r each segment s in a v a i l a b l e _ s e g m e n t s do

l oca l_dom = dom ;
e l e m e n t . Ass ignSegment (s) ;
loca l_dom ∗= E v a l u a t e E l e m e n t (e l e m e n t) ;
f o r each c o n s t r a i n t c o f e l e m e n t

loca l_dom ∗= E v a l u a t e C o n s t r a i n t (c) ;
i f (loca l_dom > p r u n e _ t h r e s h o l d)

M a t c h i n g R e c u r s i o n (r e c u r s i o n _ d e p t h + 1 ,
a v a i l a b l e _ s e g m e n t s \ { s } ,
loca l_dom) ;

end
end

Figure 6: Pseudocode of the symbol matching algorithm.

styles and temporal drawing orders. To achieve this, all pos-
sible permutations of segments to elements have to be tested.
For this, we propose a recursive algorithm that is depicted
as pseudocode in figure 6. The symbol’s DoM starts with a
value of 1 and is updated whenever an element or constraint
is evaluated, as described in section 6.2, by multiplying it
with the local evaluation result. At each call of the recur-
sion, the algorithm examines the first unused element of the
symbol, and assigns and tests each of the available sketch
segments. It thus processes one element after the other. The
recursion ends when all elements have an assigned segment,
as a valid configuration is found. Its matching quality is de-
scribed by the local DoM.

This recursive algorithm constructs a permutation tree of
the possible segment combination, which may become very
large. For performance reasons, sub-trees are pruned (see
figure 7) as soon as their local DoM drops below a thresh-
old value. For this, we use a dynamic cutoff threshold that
is updated whenever the algorithm encounters a leaf node,
since now configurations with a lower DoM than the one of
the leaf can be discarded. This pruning significantly reduced
the share of the tree that actually needs to be evaluated.

6.2. Evaluation of Elements and Constraints

After each assignment of a segment to an element, the match
of the new configuration has to be checked. This requires
the evaluation of the corresponding constraints and element
type. As the DoM for each primitive is known from the shape
recognition step (see section 5), it can simply be looked up.

Figure 7: To compare a set of sketched segments (right) with
a symbol definition (left), a permutation tree is assembled. At
each node, the algorithm assigns one of the available seg-
ments to the next element of the symbol and updates the cur-
rent DoM (numbers). If this value falls below a threshold,
the following sub-tree is pruned (dashed nodes).

Depending on the constraint type, a specific geometric pa-
rameter is used to calculate the matching degree of a con-
straint, e.g., the angle between two segments. Each con-
straint has a predefined membership function that depends
on its type and strength and allows to calculate the DoM
from the respective parameter.

6.3. Sub-Sketch Recognition

In an early version of the framework, the recognition process
always examined a sketch as a whole so that a symbol had to
be formed by all contained segments. This is bothersome in
many cases, as a sketch has to be empty when a user starts
drawing. We expanded the algorithm to perform sub-sketch
recognition, which inspects subsets of the drawn strokes.

Since one can assume that all segments of a symbol are
drawn in succession and that the last stroke is contained –
since otherwise it would have been recognized before al-
ready – potential sub-sketches consists of all segments from
a varying start point until the last added stroke. Each of these
sets of segments is individually matched by the recognizer,
yielding a separate matching degree. In cases where more
than one sub-sketch matches a symbol, accepting the most
complete sub-sketch is a good heuristic, but this choice is
generally application-dependent.

7. Results

The presented framework was implemented in C++ using the
ViSTA VR Toolkit [AK08] and was utilized for a use in a
CAVE-like environment. To draw sketches, a 6DOF input
device was used, which provided position and orientation
data at 60Hz using ART optical tracking.

7.1. Preliminary Evaluation

Using the sketch recognition framework, we implemented an
interface for architectural modifications [RA08]. It provides
a set of 28 example commands and corresponding symbols
for the modification of an architectural scenery, including
the translation, rotation, or automatic positioning of existing

c© The Eurographics Association 2010.

D. Rausch & I. Assenmacher & T. Kuhlen / 3D Sketch Recognition forInteraction in Virtual Environments

objects or the creation of new elements like doors or win-
dows. Using this application, we performed a preliminary
user study. The uses were given an introduction to the inter-
face and then had to perform specific tasks. Examples of the
required gestures were shown to the user initially, but no fur-
ther hints about correct drawings or – in case of misrecog-
nitions – of the cause of errors were given. The study was
performed with eight subjects, of which four were architects
or students of architecture.

All sketches drawn by the users were recorded to deter-
mine the quality of the sketch recognition system. In total,
782 sketches were drawn during the user studies, of which
74.8% were recognized correctly. While this rate is rather
low, it includes several recognition failures that are not due
to errors of the recognizer. 9.6% of the sketches were not
recognized because the drawn sketch was too different from
the intended symbol, usually because the user was not expe-
rienced enough with the system and drew a wrong symbol.
With more training, the users got better when drawing the
symbols, and recognition rates got better. Another frequent
cause for recognition failures were deficient symbol defini-
tions, causing 10.1% of the sketches to not be recognized.
Here, it was possible to distinguished symbols that were usu-
ally drawn correctly, and those that frequently caused prob-
lems. This shows that the symbols in the database have to be
designed carefully and adjusted to different drawing styles
of different users. Especially some user-specific variations
in the symbol’s drawing styles were not included in the def-
inition, and led to repeated errors.

The remaining 5.5% of the errors were caused by the rec-
ognizer. Here, a main error source was the corner point de-
tection, which caused 2.9% of the sketches to not be recog-
nized. During the study, we still used a simpler version of
the corner point detection, which we enhanced as a result of
these finding, leading to the method presented in section 4.

In general, the evaluation showed that the sketch-based
interface approach is suitable for interaction in 3D, even for
novice users. When suitable feedback about recognition suc-
cess or failure is provided, one quickly learns to interact with
the system using the available symbols. After a short learn-
ing phase a reliable recognition can be achieved, allowing
for a fluent interaction.

7.2. Performance Benchmarks

A variety of factors can influence the running time of the rec-
ognizer, most notably the symbols to be recognized. We have
run performance benchmarks for characteristic cases in or-
der to show the real-time capability of the algorithm. Stroke
segmentation and primitive shape recognition are performed
only once for each input stroke, and their complexity is lin-
ear in the number of points of the stroke and the number of
segments, respectively. The symbol matching works on the
whole sketch and has a general complexity of O(n!) in the

Underconstrained Constrained
Elements 8 12 16 8 12 16
Avg. (ms) 2.2 4.2 764 1.0 3.2 43.4
Dev. (ms) 0.6 4.3 1638 0.3 2.1 43.7
Max. (ms) 3.2 16.0 5420 1.4 5.9 99.3

Table 1: Results of the run-time measurement for test sym-
bols with varying number of elements of the same type. The
symbols have a normal (constrained) or minimal (undercon-
straind) amount of constraints.

number of segments, but the introduced pruning strategy en-
ables interactive recognition rates for a reasonable amount
of segments. We tested the performance for two different
scenarios: normal application and extreme cases. We used
a mobile PC with a Core 2 Duo 2GHz and 2GB RAM run-
ning on Windows XP to test at vocabulary of 10 primitive
shapes and 28 symbols as they are used in an actual applica-
tion. The recognizer is able to classify most sketches in less
than 1ms for this set-up, while complex sketches consisting
of up to 10 segments require at most 2.5ms. Since the seg-
mentation and shape recognition only depend on the size of
the input line, their computation time is relatively constant
and ranges from 50 to 200µs each. The symbol matching
step varies more strongly, as the run-time largely depends
on the number of segments, and ranges from 50 to 2000µs.

The main performance bottleneck is the symbol matching
step. While the number of elements in a symbol determine
its general complexity, element types and constraints also af-
fect the efficiency of pruning. Symbols that contain many el-
ements of the same type have a high computation time since
the type cannot be used for pruning, and thus a larger por-
tion of permutations has to be tested. Thus, we constructed
artificial symbols consisting of 8, 12, and 16 straight line
elements. To test a normal case, those lines were arranged
to a complex symbol using several constraints. Additionally,
an extremal case was model with a minimal number of con-
straints so that a large part of the permutation tree has to be
constructed. We randomized the order of the segments in the
sketch to prevent influences from drawing regularities.

The results of the performance tests are shown in Ta-
ble 1. As expected, the computation times increases rapidly
when more elements are added. In the worst case, the symbol
matching can take several seconds, but for smaller symbols
interactive recognition rates are achieved. The results also
show that for symbols with a reasonable amount of con-
straints, the pruning works a lot better and allows to use
a sufficient number of elements. To ensure a fast recogni-
tion, the amount of elements in a symbol should not exceed
a value of about 12−14, especially if the elements are of the
same type. While this limits the amount of possible symbols
for an application, it is more of a theoretical margin because
symbols of such complexity are hard to memorize by the
user, and take too long to draw for quick interaction.

c© The Eurographics Association 2010.

D. Rausch & I. Assenmacher & T. Kuhlen / 3D Sketch Recognition forInteraction in Virtual Environments

7.3. Summary

Sketch-based interaction is a useful approach for 3D in-
teraction as it is intuitive and abstract. It avoids cumber-
some input devices or cluttering of the display. It only uses
hand movement trajectories with a decent sampling rate and
one explicit trigger to start sketching. The metaphor is non-
intrusive and thus can be used in fully immersive VEs and in
combination with other metaphors.

In this paper we described the structure and algorithms
of a 3D sketching framework and reflected on important
aspects we encountered. By using an initial segmentation
step, input lines are divided into segments that each describe
a primitive shape, thereby providing more freedom when
drawing. Since current feature point detection algorithms
were not able to achieve sufficient results, we developed an
approach using linearity as global information, and thereby
could significantly improve the recognition results. For the
recognition of primitive shapes, we utilized oriented bound-
ing boxes to allow an orientation-independent recognition of
3D gestures using a fuzzy logic approach. We propose an
automatic learning system that determines suitable recogni-
tion parameters for a new shape from examples. Based on
these shapes, a user-definable and application specific set
of complex 3D symbols can be created using a description
language. All in all, this system provides a customizable,
easy-to-use interaction approach that performs recognition
of moderately complex sketches in real-time.

In the future, the recognition system can be enhanced by
further improving the stroke segmentation, which still is the
main source of misrecognitions. Additionally, global opti-
mization strategies, like simulated annealing or genetic algo-
rithms, can be utilized to enhance the primitive shape learner.
Furthermore, we consider performing a user study to com-
pare the benefits of truly three-dimensional sketches over 2D
gestures drawn onto a supporting surface.

Acknowledgement. We would like to thank the German
Research Foundation (DFG) for funding of this research in
context of the project Ku1132/5-Vo600/3.

References
[AD04] ALVARADO C., DAVIS R.: SketchREAD: A Multi-

Domain Sketch Recognition Engine. In UIST: Proceedings of
the 17th Annual ACM Symposium on User Interface Software and
Technology (2004), pp. 23–32. 2

[AK08] ASSENMACHER I., KUHLEN T.: The ViSTA Virtual Re-
ality Toolkit. In SEARIS Workshop on IEEE VR 2008 (2008).
8

[BES00] BIMBER O., ENCARNAÇÃO L. M., STORK A.: A
Multi-Layered Architecture for Sketch-Based Interaction within
Virtual Environments. Computers and Graphics 24, 6 (2000),
851–867. 2

[EBSC99] ENCARNAÇÃO L. M., BIMBER O., SCHMALSTIEG
D., CHANDLER S.: A Translucent Sketchpad for the Virtual
Table Exploring Motion-based Gesture Recognition. Computer
Graphics Forum 18 (1999), 277–286(11). 2

[FMRU03] FIORENTINO M., MONNO G., RENZULLI P. A.,
UVA A. E.: 3D Sketch Stroke Segmentation and Fitting in
Virtual Reality. In International Conference on the Computer
Graphics and Vision (2003). 5

[FPJ02] FONSECA M. J., PIMENTEL C., JORGE J. A.: CALI: An
Online Scribble Recognizer for Calligraphic Interfaces. In Sketch
Understanding, Papers from the 2002 AAAI Spring Symposium
(2002), pp. 51–58. 2, 5

[Got00] GOTTSCHALK S.: Collision Queries using Oriented
Bounding Boxes. PhD thesis, University of North Carolina at
Chapel Hill, 2000. 6

[HD05] HAMMOND T., DAVIS R.: LADDER, a Sketching Lan-
guage for User Interface Developers. Computers & Graphics 29
(2005), 518–532. 4

[HPW07] HALL A., POMM C., WIDMAYER P.: A Combinatorial
Approach to Multi-Domain Sketch Recognition. In Proceedings
of the 4th Eurographics Workshop on Sketch-Based Interfaces
and Modeling (SBIM07) (2007), pp. 7–14. 2

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: A
Sketching Interface for 3D Freeform Design. In SIGGRAPH ’99:
Proceedings of the 26th Annual Conference on Computer Graph-
ics and Interactive Techniques (1999), pp. 409–416. 2

[KEA03] KESKIN C., ERKAN A., AKARUN L.: Real Time Hand
Tracking and 3D Gesture Recognition for Interactive Interfaces
using HMM. ICANN/ICONIPP (2003), 26–29. 2

[LaV99] LAVIOLA J. J.: A Survey of Hand Posture and Gesture
Recognition Techniques and Technology. Tech. Rep. CS-99-11,
Department of Computer Science, Brown University, 1999. 2

[QWJ00] QIN S. F., WRIGHT D. K., JORDANOV I. N.: From
On-line Sketching to 2D and 3D Geometry: A System Based on
Fuzzy Knowledge. Computer-Aided Design 32, 14 (2000), 851–
866. 2, 5

[RA08] RAUSCH D., ASSENMACHER I.: A Sketch-Based Inter-
face for Architectural Modifications in Virtual Environments. In
5th GI workshop VR/AR, Magdeburg (2008). 8

[Rub91] RUBINE D.: Specifying Gestures by Example. Computer
Graphics 25, 4 (1991), 329–337. 2

[SD04] SIMHON S., DUDEK G.: Pen Stroke Extraction and Re-
finement using Learned Models. In Sketch Based Interfaces and
Modeling (Grenoble, France, 2004), Jorge J. A. P., Hughes J. F.,
(Eds.), Eurographics Association, pp. 73–79. 2

[SD05] SEZGIN T. M., DAVIS R.: HMM-Based Efficient Sketch
Recognition. In Intelligent User Interfaces (2005), pp. 281–283.
2

[SD06] SEZGIN T. M., DAVIS R.: Scale-Space Based Feature
Point Detection for Digital Ink. In SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Courses (2006). 5

[SD07] SEZGIN T. M., DAVIS R.: Sketch Interpretation Using
Multiscale Models of Temporal Patterns. IEEE Computer Graph-
ics and Applications 27, 1 (2007), 28–37. 2

[SPB09] SCHMIEDER P., PLIMMER B., BLAGOJEVIC R.: Auto-
matic Evaluation of Sketch Recognizers. In SBIM ’09: Proceed-
ings of the 6th Eurographics Symposium on Sketch-Based Inter-
faces and Modeling (New York, NY, USA, 2009), ACM, pp. 85–
92. 2

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES J. F.:
SKETCH: An Interface for Sketching 3D Scenes. In SIGGRAPH
’96: Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques (1996), pp. 163–170. 2

c© The Eurographics Association 2010.

