
A Framework for Developing

Flexible Virtual-Reality-centered Annotation Systems

Sebastian Pick∗ Torsten W. Kuhlen∗,†

∗Virtual Reality Group, RWTH Aachen University
∗JARA - High Performance Computing

†Jülich Supercomputing Centre

ABSTRACT

The act of note-taking is an essential part of the data analysis pro-
cess. It has been realized in form of various annotation systems that
have been discussed in many publications. Unfortunately, the focus
usually lies on high-level functionality, like interaction metaphors
and display strategies. We argue that it is worthwhile to also con-
sider software engineering aspects. Annotation systems often share
similar functionality that can potentially be factored into reusable
components with the goal to speed up the creation of new annota-
tion systems. At the same time, however, VR-centered annotation
systems are not only subject to application-specific requirements,
but also to those arising from differences between the various VR
platforms, like desktop VR setups or CAVEs. As a result, it is usu-
ally necessary to build application-specific VR-centered annotation
systems from scratch instead of reusing existing components.

To improve this situation, we present a framework that provides
reusable and adaptable building blocks to facilitate the creation of
flexible annotation systems for VR applications. We discuss aspects
ranging from data representation over persistence to the integration
of new data types and interaction metaphors, especially in context
of multi-platform applications. To underpin the benefits of such an
approach and promote the proposed concepts, we describe how the
framework was applied to several of our own projects.

Index Terms: D.2.11 [Software Engineering]: Software
Architectures—Domain-specific architectures I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Virtual re-
ality

1 INTRODUCTION

Note-taking is an imporant step of the data analysis process [16].
To provide the right means for note-taking in virtual reality (VR) in
context of different application scenarios, a variety of specialized
annotation systems have been developed in the past. Examples in-
clude systems for architectural walkthroughs [8], flow analysis [1],
and oil platform construction reviews [7]. While every annotation
system is geared toward a specific application, they usually share
a common set of core functionalities. These include—but are not
limited to—annotation creation and presentation, metadata in- and
output (e.g., text, audio or sketches), and persistent storage.

However, even though a common set of core functionalities can
be identified, the implementations of annotation systems vastly
differ even from a high-level viewpoint. These differences usu-
ally arise due to one of three reasons for specialization: S1—
functional requirements; S2—application-specific extensions; and
S3—platform characteristics. Core components are subject to func-
tional requirements including specialized data types (e.g., audio-
synchronized camera paths [7]) or different requirements toward

∗{pick | kuhlen}@vr.rwth-aachen.de

the persistence layer (e.g., distributed [9, 7] versus local stor-
age [8]). Additionally, application-specific extensions might also
be required, providing functonalities like automated annotation
positioning (e.g., [10]) or structured annotation representations
(e.g., [7]). Finally, diversity is further increased by differences
in available VR platforms, ranging from desktop VR setups, over
head-mounted displays (HMDs), to CAVE automatic virtual en-
vironments (CAVEs)—each featuring unique platform character-
istics that entail certain implications for application design, like
adapted metadata in- or output techniques (e.g., text input via key-
boards for desktop VR versus speech recognition for CAVEs). No
matter the reason, special requirements demand specialized anno-
tation system implementations.

This situation gives rise to various challenges from a software en-
gineering standpoint. First, individual components’ interfaces have
to be designed such that they can be combined with other com-
ponents. This is especially important if components are to be ex-
changable. Second, if adaptability is a key requirement—e.g., to
support multiple VR platforms—affected components have to be
designed accordingly. These two aspects and the fact that annota-
tion systems tend to quickly grow in complexity make the design of
reusable annotation system building blocks difficult. As a results, it
might become necessary to build annotation systems from scratch
only to fulfill application-specific requirements.

Clearly, the prospect of having to rebuild annotation systems
from scratch is economically not feasible. We have faced these
issues in various of our own projects that require annotation capa-
bilities, all of which were subject to one or more of the reasons for
specialization (S1–S3) mentioned above. In order to circumvent
the aforementioned issues, it would be worthwhile to have building
blocks that are applicable to a variety of use cases. To achieve such
a reusability without restricting extensibility, we argue that two es-
sential requirements have to be fulfilled:

1. R1—Provide a set of resuable core components that anticipate
the aforementioned reasons for specialization.

2. R2—Allow easy access to all annotation data to facilitate the
development of entirely new extensions.

R1 is important to minimize re-implementation efforts in face of S1
and S3. R2, on the other hand, ensures that it is possible to add new
functionality according to S2.

In this paper, we propose an annotation system framework that
fulfills both requirements. We present details on the structure of the
framework and give examples of how it was and is being applied to
our own projects. To the best of our knowledge, such a discussion
has not yet taken place for VR-centered annotation systems. Usu-
ally, the focus is on interaction metaphors (e.g., [4, 7, 17]), high-
level concepts (e.g., [3]) or system overviews (e.g., [8, 3, 7]). Only
rarely, generic workflows and system architectures are discussed
(e.g., [1]). However, even if such a discussion takes place, it does
not cover the software engineering challenges that arise when im-
plementing concrete annotation systems.

Therefore, the contribution of this paper is two-fold. First, we
give details on an approach that can be used as grounds to facilitate



Data Model3rd Party

Extensions Presentation

Layer

Metadata I/O

Layer

Persistence

Layer

Figure 1: An overview of the framework’s architecture. Core com-
ponents include the data model—which is the base for all other
components—, the persistence layer, the metadata I/O layer, and the
presentation layer. Extensions are build on top of these core compo-
nents and may use external dependencies, like 3rd party libraries.

the creation of annotation systems. Second, we empirically demon-
strate its usefulness by discussing its application to actual projects.

The rest of the paper is structured as follows. In the next section
we present our framework (see sec. 2). After this, we describe how
the framework was applied to some of our own projects (see sec. 3),
before concluding with a discussion (see sec. 4).

2 ANNOTATION SYSTEM FRAMEWORK

This section contains the description of our annotation system
framework. It is split into three major parts. First, an overview
of the entire framework is given and its design guidelines are ex-
plained (see sec. 2.1). After that, more details on every core com-
ponent are provided (see secs. 2.2 to 2.5). Finally, the development
of extensions is briefly discussed (see sec. 2.6).

2.1 Overview

The underlying principle guiding our framework design is based on
the fact that annotation data is at the core of the general note-taking
process [16]. All operations that are performed during note-taking
can be understood as processing annotation data in one way or an-
other, including its creation, modification, and transformation. As a
direct consequence, an annotation data model is at the heart of our
framework (see fig. 1). All other components are developed directly
on top of it. In accordance with the requirements from Section 1,
all components are designed such that they can be reused in differ-
ent application scenarios, but still retain extensibility and customiz-
ability. To this end, individual components represent rather light-
weight structures that are loosely coupled to facilitate reusability.

To achieve the goal of providing reusable building blocks, our
framework is only comprised of concepts that could be factored
into generalized components. The resulting core components con-
sist of the aforementioned data model (see sec. 2.2), a persistence
layer (see sec. 2.3), a metadata handling system (see sec. 2.4), and a
layer for presentation of individual annotations’ data (see sec. 2.5).
Any additional component is realized by means of these core com-
ponents and understood as an extension. Overall, the framework
offers three distinct points for specialization. Framework users can
(1) use integrated points for customization, (2) define specializa-
tions of existing components, or (3) develop new extensions based
on core components.

The limitation to the above core components does not mean
that only these represent essential aspects of an annotation sys-
tem. However, we argue that they constitute the most commonly
used ones and therefore deserve the most attention w.r.t. the afore-
mentioned requirements. As a result, our framework features other
components that have proven essential to many applications but are
still regarded as non-core components as they can be considered as
too specific. One major example for this are the annotation layout
facilities (see sec. 2.6).

VR support is an important design factor for our framework.
While this is not explicitly reflected in the design of all compo-
nents, it still has a substantial impact on some. This impact will be
discussed in the respective sections. Also, it must be noted that our
implementation of the discussed framework is done using a specific

Context Content

Metadata Item Document

Logical Object

Annotation

Population

Logical Object

Population

Annotation

* *

*

*

*

1 1

1

*

1

State

1

0..1

Figure 2: All data model components. Extensibility is achieved by in-
tegrated points for customization (dashed edges) and specializations
of existing types (light gray).

VR toolkit, i.e., the ViSTA VR toolkit [2]. Nevertheless, we deem
the framework’s design general enough to be applicable to other
toolkits and will thus not discuss toolkit-specific aspects (e.g., ren-
dering facilities or network protocols). Such issues should be ad-
dressed using established abstraction techniques.

2.2 Data Model

The main objective of note-taking is to capture insights about a cer-
tain object of investigation. As such, it is a process of generating
metadata and organizing it in a way that is meaningful to the in-
vestigator. Facilitating metadata organization is the main purpose
of the data model. However, this organization is not limited to the
investigator’s intentions, but also has to consider other framework
components. Each component has to be able to access the infor-
mation required for its respective operations. For these reasons, the
data model represents the most central component of the framework
being the base for all other components. Ensuring that the require-
ments from Section 1 are fulfilled is hence of special importance.
The data model is depicted schematically in Figure 2.

At the very base of the data model—being its most elemental
part—are the Metadata Items (MIs). Each MI represents a prim-
itive metadata entity, like a text fragment, an image, or an audio
recording. New MIs are easily introduced by specializing an MI
base class. Internally, MIs are allowed to hold any type of data and
can organize it in any way required. Access to that data is granted
by means of a reflection mechanism. The reflection mechanism has
MIs expose relevant data fields by means of a series of keys. These
keys can be used to query a data field’s type and to retrieve its data
payload. The same mechanism is used to supply data to MIs.

One design goal is to create MIs that store only a minimal set
of metadata, instead of complex combinations of it. For example,
instead of realizing a type like a ‘labeled screenshot’ as a single
MI, it is encouraged to split it into an MI for text (label) and image
(screenshot) each. The reason for this is that combining primitive
types scales better, as they can be reused more easily in other con-
texts. A structuring mechanism that enables the combination of MIs
into complex types is discussed below.

To organize MIs of one annotation, we employ an approach
based on the Context-Content Model (CCM) introduced by Assen-
macher et al. [1]. The CCM groups MIs either into the context—
which holds contextual information, like the viewer position at an-
notation creation—or the content—which contains the actual user-
generated note-taking metadata. In contrast to the original CCM,
our approach allows for a more advanced organization of MIs. As
contextual metadata is usually generated automatically, it is orga-



nized in the context in the same way as in the original CCM, i.e., in
an unordered list without further structure. For content-related MIs,
however, we employ a document-style hierarchical structure. The
reason for this lies in the fact that note-taking metadata itself usu-
ally has a document-like structure, like the aforementioned ‘labeled
screenshot’ example. As a result, MIs are first assigned to a docu-
ment before storing them in the content. A document can hold an
arbitrary number of MIs to facilitate grouping of related items, e.g.,
a series of screenshots. In addition, a document can be assigned
a parent document, which is used for the creation of hierarchies.
This way, the aforementioned ‘labeled screenshot’ can be realized
by first creating a document containing a text MI and another con-
taining an image MI. Next, the image document is made the parent
of the text document. Note, that this organization does not imply a
potential graphical layout but only a logical one.

Together, the data stored in context and content makes up an an-
notation. However, instead of directly associating context and con-
tent to an annotation, they are first combined into a so-called state,
of which an annotation can hold an arbitrary number. These states
are used to reflect discrete changes in annotation data. The main
application scenario for this is time-variant data. Here, states can
be used to change the annotation data according to changes in the
annotated object. In our framework this is realized by a specialized
annotation type. It requires from each of its states that their con-
texts contain timing information, which is then used to determine
the currently active state. This way, states are an incarnation of the
annotation mechanism for time-varying data as presented in [1]. In
general, specialized annotation types are only required in order to
determine the active state according to a given condition.

In addition to the data stored in annotations, every annotation
can also store links to related annotations. This way, complex re-
lationships can be expressed. One application scenario for this was
discussed in [7]. By relating annotations to each other, an issue
tracking system was realized. It allows users to have issue-related
discussions by adding new annotations to an issue and relating them
to other annotations of that issue, e.g., to reply to previous remarks.

To extract annotatable objects from the data set under investiga-
tion, we employ the concept of Logical Objects (LOs) introduced
in [1]. An LO represents an arbitrary subset of scene data that an
annotation relates to. It can, therefore, be understood as an adapter
between scene data and the annotation framework. Often, an LO
contains the information that is required to reconstruct relevant as-
pects of the scene data independently from the original data set.
Developers can introduce arbitrary new types of annotatable objects
by specializing an LO base class, which only imposes a minimal in-
terface. No constraints are placed on the data that can be contained
in an LO. It has to be noted that it is optional for an annotation to
relate to an LO, as such a relation cannot necessarily be established
in every situation. One such situation, which was also discussed in
[1], is the creation of overview screenshots of the entire scene.

At the top of the data model reside the annotation population and
the logical object population. Both constitute collections for anno-
tations and LOs, respectively. While populations are also responsi-
ble for managing the lifetimes of entries added to them, their main
purpose is to group related annotation data and provide a central
point of access. If entries are added to or removed from a popula-
tion, appropriate messages are emitted using an observer pattern [5]
such that dependent components can directly react to changes. This
behavior is exploited by various (core) components as explained in
the following sections. In addition, basic data consistency is also
ensured. This means that if an annotation is added to a population,
it is checked whether its LO is contained in the associated LO popu-
lation. If this is not the case, it will be automatically added, thereby
ensuring accessibility of all referenced LOs.

The described data model fulfills both requirements from Sec-
tion 1. In accordance to R1, it is possible to make any type of

Persistence

Implementation

Annotation

Population

1

Metadata Item

Factory

Annotation

Factory

Logical Object

(De)Serializer

Logical Object

Population

1

1

1

1

Figure 3: The persistence layer provides common functionality re-
quired to store and restore annotation data (dark gray) to concrete
persistence implementations (light gray).

object annotatable and store arbitrary types of metadata in annota-
tions. Structuring mechanisms further allow to express advanced
relations between metadata primitives and entire annotations. As
all annotation data is accessible, the creation of extensions is also
ensured, thus fulfilling R2.

2.3 Persistence Layer

Similarly important as the organization of annotation data at run-
time is its persistent storage, such that it can be retained for future
access. Consequently, the persitence layer is designed such that
specific persistence implementations are enabled to handle any kind
of annotation data. A specific persistence implementation is granted
access to annotation data by means of the annotation and LO pop-
ulations. The most important operations, i.e., preparing objects for
storage and restoring them from persisted data, are facilitated by
serialization and factory approaches (see fig. 3).

In general, every storage and retrieval operation happens in two
phases. First, LOs are processed, after which annotations are. This
order is enforced for all persistence implementations using the tem-
plate method design pattern [5]. The reason for this is the depen-
dence of annotations on LOs. An LO is part of an annotation’s data
and can potentially be referenced by multiple annotations at once.
Thus, first processing LOs ensures that annotations can rely on
related LOs’ proper handling before being processed themselves.
Thereby, data handling issues, like data corruption (storage) and
incomplete annotation data (retrieval) can be avoided.

Storage and retrieval look similar for all annotation data. They
involve a variety of (de)serialization operations in conjunction with
implementation-specific storage operations. Storage operations are
hidden in the concrete persistence implementation and no con-
straints are placed on their realization. (De)serialization operations,
on the other hand, have to be designed in a generalized fashion,
since data types can be specialized. Consequently, our framework
provides such generalized (de)serialization facilities for all user-
definable types, i.e., LOs, annotations and MIs.

As mentioned in Section 2.2, the design of LOs can be freely
chosen and is thus transparent to persistence implementations. Con-
sequently, LO (de)serialization also has to happen in a transparent
fashion. To this end, for every LO a factory-like (de)serialization
function has to be specified by its implementer. These functions are
organized in the logical object (de)serializer (see fig. 3). To store
an LO, it is passed to the logical object (de)serializer, where the
matching (de)serialization function is determined and the LO seri-
alized accordingly. To restore an LO, the serialized data and the
LO’s type identifier are passed to the logical object (de)serializer,
which creates a concrete LO instance from it.

Compared to LOs, persisting annotations is relatively simple.
Since annotation specializations are only required for state manage-
ment, only the annotation type has to be stored to be able to restore
it. For this, a factory approach is chosen for which implementers
only register annotation types that are to be used.



processes

Filtering

Mechanism
Request Handler

1

*

*

Metadata Request

Operation ID

Multi-part Request

Operation ID

Metadata Item

Semantic Type

Figure 4: The metadata handling system allows to formulate arbitrary
metadata in- and output requests based on the available Metadata
Items. Every request is matched semi-automatically to available in-
and output techniques by means of a user-in-the-loop approach.

MIs are (de)serialized exploiting their reflection mechanism.
Persistence implementations retrieve the contents of each of an
MI’s data fields and are free to store them in any way desired. For
this to work, it must be ensured that contents of every data field can
be serialized. To this end, the reflection mechanism always returns
contents in a serialized form. Primitive types, like numerical val-
ues, are retrieved in their native form. Complex types, like image
data, on the other hand, is provided in a pre-serialized form using
an approach equal to the one used for LOs. To restore MIs, first
a factory approach is used to create a concrete MI instance, after
which its fields are restored.

In our framework implementation, serialization data occurs in
the form of byte arrays. For persistence implementations that can-
not directly handle binary data, we use a base64 encoder to trans-
form it into strings. A concrete example for such an implementation
is one based on SOAP web services.

The design of the persistence layer allows for the use of arbi-
trary storage approaches for two reasons. First, all relevant annota-
tion data can be accessed through the annotation data populations.
Second, the generalized serialization facilities reduce storage oper-
ations to organizing chunks of already serialized data. Therefore,
new implementations can be easily created and reused, whereby re-
quirements R1 and R2 are fulfilled.

2.4 Metadata Handling

As stated before, metadata is at the heart of the note-taking pro-
cess and represented by MIs in our framework. Consequently, ap-
propriate workflows for the in- and output of metadata—so-called
Metadata Input/Output Operations (MIOPs)—have to be provided.
Unfortunately, designing such workflows is not trivial and rigid,
pre-defined workflows are not a viable solution.

Instead, it is desireable to be able to create adaptable, easy-
to-extend workflows for three reasons. First, workflows have to
be adapted to the used VR platform. Usually interaction tech-
niques vary across platforms for technical reasons and choices of-
ten depend on subjective or task-related reasons. Hence, workflows
should only offer techniques that are suited for a given MIOP. Sec-
ond, not all types of metadata can be captured using single inter-
action techniques. For example, creating a ‘labeled screenshot’ re-
quires the use of at least two techniques. Third, new MIs might
have to be added, requiring the extension of existing workflows.

We argue that a mechanism that facilitates metadata in- and out-
put in face of these issues has to fulfill three requirements. (1) It has
to automatically identify suitable techniques—so-called Metadata
Handling Techniques (MHTs)—for a given platform and MIOP. (2)
It has to automatically arrange MHTs into workflows if required.
(3) It has to be extensible w.r.t. new MHTs and MIs. In the follow-

Figure 6: A user is prompted by the metadata handling system’s fil-
tering mechanism to choose one of several available text input tech-
niques (see sec. 2.4.3). Here, the system is applied to the flapAssist
application [12] (see sec. 3.3).

ing, we discuss how such an approach is realized in our framework.

We first give an overview of the approach (see sec. 2.4.1). Then
we explain how MIOPs are triggered (see sec. 2.4.2) and appropri-
ate MHTs selected (see sec. 2.4.3).

2.4.1 Approach Overview

In general, our approach works similar to Android’s Intent sys-
tem [6]. First, a request for a MIOP (Android: Intent) is issued to
the system. Next, a filtering mechanism identifies MHTs (Android:
Activities) that can handle the request. In case multiple MHTs were
identified, the user is prompted to make a choice.

The idea of introducing a filtering mechanism helps to fulfill the
requirements introduced at the beginning of this section. Instead
of presenting the user with a fixed choice of MHTs, the filtering
mechanism can first identify those techniques that are suitable for
a given request, the used platform, and the present in- and output
devices. This way, workflows are automatically formulated by the
system avoiding the need to manually design them. Finally, the user
can choose from identified MHTs based on her preferences and the
given MIOP, in case multiple alternatives are available.

However, in order to be applicable to the selection of MHTs, the
Intent concept has to be extended. Figure 4 gives an overview of
the components of our system, which are described below.

2.4.2 Metadata Request Definition

MIOPs are handled in various steps and initially triggered by for-
mulating a Metadata Request (see fig. 5). The request consists of
an operation identifier, which indicates whether an in- or an output
operation is to be performed, and an MI, which indicates the kind of
metadata to be handled. In contrast to Android’s Intents, a request
is inherently tied to a data object representing the metadata, i.e.,
the MI. More complex requests like ‘create labeled screenshot’, are
formulated as an ordered list of individual requests, called Multi-
part Metadata Requests, which are processed one after another.

The MI provides two important pieces of information. First, its
data entries define the data format in which metadata is organized,
e.g., as a pixel image. Second, each MI is assigned a so-called se-
mantic type which allows to semantically interpet the data stored
within an MI. For example, it indicates whether a pixel image rep-
resents a screenshot or a sketch. The semantic type is an integral
part of every MI in addition to the data entries already discussed in
Section 2.2. Together, both pieces of information are important to
determine a suitable MHT, as described in Section 2.4.3.

2.4.3 Filtering Mechanism

Requests are passed on to the filtering mechanism that determines
applicable MHTs in form of Request Handlers. Each handler rep-
resents a single MHT and has to fulfill three tasks. First, it exposes



(Multi-part)

Request generated

Match

RequestHandlers

using RequestFilters

Number of

RequestHandlers?

Activate

RequestHandler

Prompt user

for choice of Handler

RequestHandler

choosen?

Completed

successfully?

Unfulfilled

Request left?

Processing

aborted

Processing

completed

Display

error message

0

> 1

1

Aborted

Yes

Yes

Aborted No

Yes

Figure 5: Metadata Input/Output Operation handling is triggered by generating a Metadata Request (dark gray box). Next, the filtering mechanism
attempts to fulfill the request by identifying and activating a suitable Request Handler (blue boxes). Based on the outcomes of these steps (gray
diamonds) request processing is either aborted or successfully completed (red and green boxes).

a technique’s capabilities in form of Request Filters and platform
information. Both are used to determined whether an MHT can be
used to handle a request or not. Second, it is responsible for trans-
ferring the metadata between the MHT and the MI, including any
required data conversion. Third, it activates the associated MHT if
a new request is passed to it and deactivates it again after the re-
quest was handled. Based on the number of identified handlers, the
filtering mechanism emits an error to the user (no handlers found),
passes the request to the handler for processing (exactly one han-
dler found), or prompts the user to choose among available handlers
(more than one handler found; see fig. 5).

In general, the filtering mechanism works similarly to Android’s
Intent system [6]. However, the role of handlers differs from those
of Android’s Activities. Instead of representing full-fledged MHTs
themselves, they are only an interface between the actual technique
and the filtering mechanism. Hence, the number of adaptations nec-
essary to use techniques with the annotation framework that are
otherwise independent of it can be reduced.

Apart from the handlers, the rules used by the filtering mecha-
nism to match requests with handlers were also modified compared
to Android. The filtering happens in two steps. First, the han-
dler’s platform information is checked against the used platform.
This way, it is determined whether a technique is applicable to a
given platform and whether all required in- and output devices are
present. If this check fails, the handler is deemed unsuitable; if it
succeeds, the second filtering step commences.

In this step, the request is matched to all of the handler’s filters.
To this end, each filter holds the same information as a request to
indicate processible request configurations. This includes an oper-
ation identifier, a semantic type, and a data format (see sec. 2.4.2).
Matching a request to a filter can have one of three outcomes:

1. No match Operation identifiers do not match, or they match,
but neither data format nor semantic type match.

2. Weak match Operation identifiers and data formats match,
but semantic types do not.

3. Strong match Operation identifiers, data formats, and seman-
tic types match.

A handler is considered suitable for a request, if at least one of
its filters yields either a weak or strong match. The idea behind
this is that while only strong matches indicate a fully compatible
handler, weak matches can still be used as fallback techniques. For
example, a viewer for generic images can still be used for viewing
sketches even though it cannot provide editing functionality. For
this reason, the list that is shown to a user to prompt her to choose
from available MHTs, consists of all techniques for which a weakly
or a strongly matching filter was found.

The metadata handling system fulfills requirements R1 and R2.

The abstraction by Reuqest Handlers allows to use any type of MHT
desired, especially those that are implemented in terms of other
toolkits or 3rd party libraries. At the same time, handlers consti-
tute reusable building blocks. Issues that arise in context of multi-
platform VR applications are also addressed.

2.5 Presentation Layer

So far only creation, handling, and storage of annotation data have
been discussed. Another essential aspect, however, is its presenta-
tion. Depending on the data stored in an annotation and its organi-
zation, the annotation’s presentation form can differ. For example, a
text might indicate that a label is to be displayed, while a screenshot
together with viewing information indicate a viewpoint annotation
(see fig. 7). In general, the presentation form of annotation data
depends on the purpose for which an annotation was created.

However, explicitly assigning a presentation form to an anno-
tation at creation is undesireable for various reasons. First, naı̈ve
solutions easily lead to a rigid design that is difficult to maintain.
Second, it must be ensured that the link between annotation and
presentation form is restored when annotations are loaded using the
persistence layer. To avoid these issues, we employ an approach
that decouples the creation of an annotation from the choice of
a presentation form. First, an annotation is created and added to
an annotation population. Next, a presentation manager observing
that population retrieves the annotation and generates an appropri-
ate presentation form using a factory design pattern (see fig. 8).

This factory approach uses two pieces of information to deter-

Figure 7: The factory layout planning application flapAssist [12] uses
annotations to capture layout-related comments. Labeled (top) and
viewpoint annotations (bottom middle) are shown in yellow.



Annotation

Population

*

Presentation

Manager

1

1

Annotation

Semantic Type

Presentation

Form
1

*

Figure 8: In the presentation layer, a presentation manager gener-
ates presentation forms for annotations added to a population. It
does so by considering the annotation’s class and semantic types.

mine the presentation form. First, the annotation type is used as
it was already discussed in Section 2.2. In addition, each annota-
tion also holds a semantic type similar to the one used for metadata
handling (see sec. 2.4). It is used to indicate the purpose of an an-
notation. For the two aforementioned types of annotations shown
in Figure 7—i.e., labeled and viewpoint annotations—two different
semantic types were used, while using the same annotation type.

This abstraction addresses both of the aforementioned issues and
preempts the need of rigidly linking annotations to presentation
forms. First, links can be changed by configuring the presentation
manager accordingly. Second, the presentation form is automat-
ically created when annotations are restored by a persistence im-
plementation. It is even possible to change the presentation form
after annotations have been persisted. Technically, each presenta-
tion form is based on a common base class that offers facilities to
access the associated annotation’s data. Each concrete presentation
form has to verify whether the supplied annotation data contains the
required information. If this is not the case, the presentation form
creation is aborted. Aside from these checks, presentation forms
can be implemented in any way desired. The choice for what anno-
tation data is presented and how, is entirely within the responsibility
of the concrete presentation form.

The above design facilitates the creation of arbitrary types of pre-
sentation forms for annotation data. It offers a flexible link between
the annotation data itself and what presentation form is to be used
for it. Consequently, requirements R1 and R2 are both fulfilled.

2.6 Extensions

In the previous sections the core components of the annotation
framework have been discussed. Here, we briefly describe how
they can be utilized to implement additional extensions. In general,
additional components are considered to be extensions, if they add
functionality that makes very specific assumptions thus making it

Figure 9: The VisNEST application [11] for exploring brain activity
data. It utilizes an automated layout algorithm [13] and encodes ac-
tivity data of brain areas in annotations’ presentation forms, i.e., their
leading lines’ width and color (see sec. 3.2).

difficult to generalize or extent them.

One example for such an extension are automated annotation
layout algorithms. The purpose of these algorithms is to automati-
cally position annotations within the virtual environment (VE) such
that visual accessibility is ensured and the perception of annotations
improved. One such algorithm is shown in Figure 9, which—being
targeted at clusters of centralized objects—produces radial layouts
[13]. All layout algorithms currently available in our framework—
including radial, column and offset layouts—make certain assump-
tions about annotations and LOs. For example, annotation forms
that shall be used with a layout algorithm need to allow to change
their transformation (see sec. 2.5). Also, associated LOs have to
provide certain types of information, e.g., a so-called anchor point,
which is used for connecting leading lines or for determining rela-
tive annotation positions (see fig. 9).

Technically, the layout extension depends on the data model and
the annotation presentation layer components. To transfer newly
created annotations to a layout algorithm, a filter mechanism is em-
ployed. The filter mechanism observes the presentation manager
and the LO population and ensures that only those annotations and
LOs are added to a layout algorithm, that are of the correct presen-
tation form and contain the required metadata. As layout algorithms
retrieve the data they work on from the populations, it is possible to
swap layout algorithms at any time.

In general, the layout extension fulfills requirement R1 as it is
based on core components of the framework. On the other hand,
R2 is usually not fulfilled as layout algorithms often have to be
adapted to meet specific needs.

3 RESULTS

In this section we describe how the discussed framework has been
applied to several applications. We point out specific needs of each
application in context of the annotation framework with the goal to
promote the concepts discussed in the previous section.

3.1 Exploration of Air Traffic Effects

In the Virtual Air Traffic System Simulation (VATSS) project [14]
an immersive virtual environment (IVE) targeting CAVEs was de-
veloped, which allows users to experience the effects of air-traffic-
related noise emissions. The purpose of this application is to facil-
itate the communication between different groups of stakeholders
during the approval process of air-traffic-related projects, like the
addition of runways to existing airports or the introduction of new
types of aircraft. To this end, users are able to not only look at visu-
alizations of noise emissions, but also to experience them by means
of a real-time 3D auralization approach (see fig. 10).

The VATSS application uses annotations to enable users to mark
points of interest on the ground, e.g., to mark the house of an af-
fected resident. These markers can then be used to analyze simu-
lation scenarios, e.g., by comparing the noise levels from different
simulations at the marked locations. In total, two different types of
markers can be created: location and threshold markers. Location
markers represent location bookmarks to points of interest. Users
can freely choose names for these markers by means of a speech-
recognition-based text input system. Subsequently, these markers
can be used to indicate the destination for a semi-automated trav-
eling technique, such that users can easily move there in order to
listen to auralized noise emissions. The threshold marker, on the
other hand, indicates if a certain noise level has been exceeded at
a point on the ground. When it is placed, the user is prompted to
choose a scalar noise level threshold by means of a slider-based in-
teraction technique. Whenever the noise threshold is exceeded, the
marker visually signals this to the user. Additionally, when a user
clicks on such a threshold marker, those segments of an airplane’s
trajectory are highlighted, for which the threshold at the marker’s
location is exceeded (see fig. 10). This way, users are made aware



Figure 10: The Virtual Air Traffic System Simulation application [14]
used to communicate effects of air-traffic-related noise emissions. It
supports data annotation for analysis and comparison of air traffic
simulations (see sec. 3.1). Here, a marker indicates whether the
noise level at a given location exceeds a certain threshold. Click-
ing on it highlights those airplane trajectory segments, for which the
threshold is exceeded (highlighted in blue).

of changes in noise levels at user-defined locations while looking at
the running simulation or when comparing simulations.

For the realization of the above functionality, all of the frame-
work’s components were used. To define the two different marker
types, a common annotation type and two presentation forms were
created (see sec. 2.5). For location markers the labeled annotations
were used, while a specialized form of them was derived for thresh-
old markers. Placement of annotations happened by means of a
static offset layout algorithm. Whenever an annotation was created,
first, an appropriate LO was instantiated for it. For location mark-
ers, the LO’s data only consisted of a vector indicating the point on
the ground. For threshold markers the time-dependent noise data
at the given location was also stored for each associated simulation.
Annotation of time-dependent data was done using the state concept
introduced in Section 2.2. Immediately after LO creation, a meta-
data request for either text input (location marker) or definition of a
scalar floating point value (threshold marker) was emitted. For the
aforementioned input techniques, appropriate handlers were regis-
tered with the metadata handling system (see sec. 2.4). Annotation
data was persisted using an XML-based persistence implementation
(see sec. 2.3). The semi-automated traveling technique for location
markers was developed as an extension (see sec. 2.6).

3.2 Exploration of Brain Activity Data

The application VisNEST [11] is being developed as a tool for the
exploration of brain activity data generated by the NEST simula-
tor. To this end, VisNEST provides various visualizations that offer
different views onto acivity data.

In this setting, annotations are used to augment visualizations
with additional contextual information. For example, annotations
are used to provide anatomical names for geometrical representa-
tions of brain areas (see fig. 9). Users can explore the brain model
by means of navigation and direct manipulation techniques, like
dragging around individual areas to reveal views onto hidden ones.
In addition to providing anatomical names for brain areas, annota-
tions also encode an area’s current activity w.r.t. the time-dependent

simulation data. Depending on the activity, the color and width of
an annotation’s leading line is modulated (see fig. 9).

In contrast to the VATSS application, VisNEST uses the annota-
tion framework only for data presentation and does not allow to cre-
ate new annotations. Overall, only the data model, the presentation
layer and the layout extension were used. To encode the brain ac-
tivity data, a specialization of the labeled annotations was derived.
For this, each LO contains the time-dependent simulation data for
its respective brain area. Annotation placement was realized using
a radial layout algorithm [13], which also ensures the correct anno-
tation placement during direct manipulation operations, like drag-
ging. Furthermore, annotation data is not persistently stored, but
generated on the fly from the brain activity data that was loaded.

3.3 Factory Layout Planning

The Factory Layout Planning Assistant (flapAssist) application [12]
is one of several applications currently developed in the context
of virtual production within the Cluster of Excellence “Integrative
Production Technology for High-Wage Countries” project. Its pur-
pose is to facilitate the factory layout planning process by means
of visualization and VR approaches. To this end, flapAssist inter-
faces with a commercial layout planning tool to instantly retrieve
planning data and enable immediate virtual walkthroughs within an
IVE. Additional decision-relevant information is made accessible
in form of visualizations.

Within flapAssist, annotations are used to capture insights gath-
ered and decisions made during virtual walkthroughs regarding the
factory layout. To this end, users can create different generic an-
notations, like labeled or viewpoint annotations (see fig. 7), and
store various types of metadata in them, e.g., audio comments or
sketches. While the main target platform for flapAssist are CAVE-
like IVEs, it also has to support non-immersive desktop systems.
The reasons for this is, that insights generated during a virtual walk-
through have to be re-traceable even if an immersive VR system is
not available. This is the common case as planners involved usually
do not have access to VR hardware apart from special planning ses-
sions. To ease this exchange of information between systems and
planners that might even be remotely distributed, the so-called Vir-
tual Production Intelligence Plattform (VPIP) [15] is being devel-
oped by project partners. It constitutes a web-based data integration
platform that is used for distribution of any planning-relavant data
among involved parties. For this reason, it has to be possible to also
exchange annotation data through it. One feature currently under
development, is a discussion system similar to the one from [7].

flapAssist makes extensive use of all framework components.
First, several annotation types, like labeled and viewpoint anno-
tations, can be created using the presentation layer (see sec. 2.5).
The user can add arbitrary MIs to annotations by generating the
appropriate metadata request via a context menu invoked on anno-
tations. To support the metadata input within CAVE-like IVEs and
also on desktop systems, the metadata handling system is heavily
used (see sec. 2.4). On desktops, users can use established means,
e.g., to capture screenshots or enter texts. For CAVEs, a variety
of techniques is combined, e.g., text input is supported by speech
recognition as well as by means of an Android-based application
(see fig. 6). The latter is also used to record or playback audio
comments. For annotation positioning an offset layout algorithm
is currently being used. Persistent storage of annotations can be
configured to store annotation data either locally or remotely by
simply swapping persistence implementations. For local storage,
the XML-based approach developed for the VATSS application (see
sec. 3.1) has been reused. For remote storage, on the other hand, an
implementation based on SOAP web services was created, which
is compatible with the aforementioned VPIP data integration back-
end. The discussion system is currently being developed on top of
the data structuring mechanisms from the data model (see sec. 2.2).



4 DISCUSSION AND CONCLUSION

We have described an annotation system framework that helps to
speed up the creation of VR-centered annotation systems. It does
so, by providing various core components that provide common
functionality present in almost every annotation system. At the
same time, these components are designed for an increased degree
of extensibility and customizability, such that annotation systems
can be easily adapted to application-specific needs. To promote
our design choices, we have discussed how the framework was
used in different contexts and how it facilitated the realization of
application-specific needs.

Overall, the framework provided sufficient flexibility to apply it
to a variety of application scenarios. This means that requirements
put forward by each application could be realized either by har-
nessing the provided points for specialization, or by implementing
new extensions relying on the basic mechanics provided by the core
components. Due to the loose coupling between core components,
a library of reusable building blocks was developed during the cre-
ation of application-specific annotation systems. This includes—
among others—specialized persistence implementations, layout al-
gorithms, annotation presentation forms, and metadata handling
techniques. Some of these building blocks were already reused by
the described applications. Therefore, we argue that our architec-
ture fulfills the requirements as introduced in Section 1.

Nevertheless, while the framework has already been successfully
applied, it is still undergoing active development. The design of the
framework is based on the identification of recurring patterns across
different application scenarios. These recurring patterns are then
extracted into generalized concepts, which—so far—have resulted
in the presented components. Consequently, core components only
reflect those aspects of an annotation system that could be general-
ized to a point where they are applicable to other application sce-
narios as well. Even though the framework already covers various
aspects, some areas have not yet been touched at all. Furthermore,
some components can be extended by additional functionality.

One example for still uncovered functionality is the segmenta-
tion of scene data into annotatable objects—the aforementioned
Logical Objects (LOs). In several scenarios this segmentation
might happen as a pre-processing step as proposed by some ap-
proaches. Segmentation can, however, often only happen at run-
time as it depends on the user’s intentions to annotate. So far, it
is the repsonsibility of the application to generate LOs without any
framework-support apart from the data model, e.g., as described
for the VATSS and flapAssist applications. To further extend our
framework, we are currently working on a generalized approach to
LO generation and similarly useful components.

An example for a component that can be further improved is
the presentation layer. So far, different presentation forms are dis-
cerned solely by an annotation’s semantic type. While this allows
to realize any desired presentation form, it is a rather coarse ap-
proach as it allows to influence data presentation only on the level
of entire annotations. Thus, new presentation forms have to always
consider the entire annotation data, even if only the presentation of
a subpart of it has to be changed. Instead, it would be desireable to
be able to specify presentation forms for subsets of an annotation’s
metadata, e.g., only a certain document or an individual metadata
primitive. To realize such a fine-grained approach, we are currently
working on integrating techniques used in automated user interface
generation into the presentation layer.

In summary, using the presented annotation system framework
has already significantly helped us to realize annotation systems
for specific application scenarios. We could reuse existing building
blocks and could focus on application-specific functionality dur-
ing development, relying on the provided low-level functionality
instead of having to re-build it. As a result, we argue that adapt-
ing the proposed concepts is worthwhile. At the same time, we are

working on extending the framework to further increase it useful-
ness. Overall, our framework is a good basis for the creation of
application-specifc, VR-centered annotation systems.

ACKNOWLEDGEMENTS

This research was funded by the German Research Foundation
DFG as part of the Cluster of Excellence “Integrative Production
Technology for High-Wage Countries”.

REFERENCES

[1] I. Assenmacher, B. Hentschel, C. Ni, T. Kuhlen, and C. Bischof. In-

teractive Data Annotation in Virtual Environments. In Proc. of the

Eurographics Conf. on Virtual Environments, pages 119–126, 2006.

[2] I. Assenmacher and T. Kuhlen. The ViSTA Virtual Reality Toolkit. In

Proc. of the IEEE VR Workshop Software Engineering and Architec-

tures for Realtime Interactive Systems, pages 23–28, 2008.

[3] D. Bowman, C. North, and J. Chen. Information-rich virtual environ-

ments: theory, tools, and research agenda. Proc. of the ACM Sympo-

sium on Virtual reality Software and Technology, pages 81–90, 2003.

[4] J. Chen, P. Pyla, and D. Bowman. Testbed evaluation of navigation

and text display techniques in an information-rich virtual environment.

Proc. of the IEEE Conf. on Virtual Reality, pages 181–188, 2004.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley,

1994.

[6] I. Google. Android Intents and Intent Filters, 2014.

http://developer.android.com/guide/components/intents-filters.html,

last visited on 2014/11/21.

[7] J. Guerreiro, D. Medeiros, D. Mendes, M. Sousa, J. Jorge, A. Raposo,

and I. Santos. Beyond Post-It: Structured Multimedia Annotation for

Collaborative VEs. In Proc. of the Eurographics Conference on Vir-

tual Environments, pages 55–62, 2014.

[8] R. Harmon, W. Patterson, W. Ribarsky, and J. Bolter. The Virtual

Annotation System. In Proc. of the IEEE Virtual Reality Annual In-

ternational Symposium, pages 239–245, 1996.

[9] T. Jung, M. D. Gross, and E. Y.-L. Do. Annotating and Sketching on

3D Web Models. In Proc. of the ACM Conference on Intelligent User

Interfaces, pages 95–102, 2002.

[10] S. Maass and J. Döllner. Efficient View Management for Dynamic An-

notation Placement in Virtual Landscapes. In Springer Smart Graph-

ics, pages 1–12, 2006.

[11] C. Nowke, M. Schmidt, S. J. V. Albada, J. M. Eppler, R. Bakker,

M. Diesmann, B. Hentschel, and T. Kuhlen. VisNEST Interactive

Analysis of Neural Activity Data. IEEE Symposium on Biological

Data Visualization (BioVis), pages 65–72, 2013.

[12] S. Pick, S. Gebhardt, K. Kreisköther, R. Reinhard, H. Voet,

C. Büscher, and T. Kuhlen. Advanced Virtual Reality and Visualiza-

tion Support for Factory Layout Planning. In Proc. of the Conference

Entwerfen Entwickeln Erleben, 2014.

[13] S. Pick, B. Hentschel, M. Wolter, I. Tedjo-Palczynski, and T. Kuhlen.

Automated Positioning of Annotations in Immersive Virtual Environ-

ments. In Proc. of the Joint Virtual Reality Conference of EuroVR -

EGVE - VEC, pages 1–8, 2010.

[14] S. Pick, F. Wefers, B. Hentschel, and T. Kuhlen. Virtual Air Traf-

fic System Simulation—Aiding the Communication of Air Traffic Ef-

fects. In Poster Proc. of IEEE Virtual Reality, pages 133–134, 2013.

[15] R. Reinhard, C. Büscher, T. Meisen, D. Schilberg, and S. Jeschke. Vir-

tual Production Intelligence—A Contribution to the Digital Factory.

In C.-Y. Sum, S. Rakheja, and H. Liu, editors, Intelligent Robotics

and Applications, volume 7506 of Lecture Notes in Computer Science,

pages 706–715. Springer Berlin Heidelberg, 2012.

[16] R. Springmeyer, M. Blattner, and N. Max. A Characterization of the

Scientific Data Analysis Process. In Proc. of the Conference on Visu-

alization, pages 235–242, 1992.

[17] M. Tsang, G. W. Fitzmaurice, G. Kurtenbach, A. Khan, and B. Bux-

ton. Boom Chameleon: Simultaneous capture of 3D viewpoint, voice

and gesture annotations on a spatially-aware display. In Proc. of the

ACM Symp. on User Interface Software and Technology, pages 111–

120, 2002.


