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ABSTRACT   

Visualising volumetric medical images such as computed tomography and magnetic resonance imaging (MRI) on picture 

archiving and communication systems (PACS) clients is often achieved by image browsing in sagittal, coronal or axial 

views or three-dimensional (3D) rendering. This latter technique requires fine thresholding for MRI. On the other hand, 

computing virtual radiograph images, also referred to as digitally reconstructed radiographs (DRR), provides in a single 

two-dimensional (2D) image a complete overview of the 3D data. It appears therefore as a powerful alternative for MRI 

visualisation and preview in PACS. This study describes a method to compute DRR from T1-weighted MRI. After 

segmentation of the background, a histogram distribution analysis is performed and each foreground MRI voxel is 

labelled as one of three tissues: cortical bone, also known as principal absorber of the X-rays, muscle and fat. An 

intensity level is attributed to each voxel according to the Hounsfield scale, linearly related to the X-ray attenuation 

coefficient. Each DRR pixel is computed as the accumulation of the new intensities of the MRI dataset along the 

corresponding X-ray. The method has been tested on 16 T1-weighted MRI sets. Anterior-posterior and lateral DRR have 

been computed with reasonable qualities and avoiding any manual tissue segmentations. This proof-of-concept holds for 

research application for use in clinical PACS. 

Keywords: Visualization, Preview, Picture Archiving and Communication Systems (PACS), Digitally Reconstructed 
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1. INTRODUCTION  

Computed tomography (CT) and magnetic resonance imaging (MRI) constitute two major three-dimensional (3D) 

imaging modalities largely used in clinical routine. Once recorded, a dataset is composed of a set of parallel cross-

sectional two-dimensional (2D) images, which frequently are difficult to visualize, manipulate and interpret. Having an 

overview of the content of a volumetric set on a picture archiving and communication system (PACS) client is often 

achieved by browsing the images in sagittal, coronal or axial views and by intensity-based 3D volume rendering. While 

volume rendering appears efficient for CT datasets, MRI requires finer tuning difficult to use in practise. 

Computing virtual radiographs, also referred to as digitally reconstructed radiographs (DRR), provides in a single 2D 

image an overview of the entire 3D data and appears therefore as a powerful alternative to volume rendering. 

Computing DRR from CT is straightforward as the CT intensities follow the Hounsfield unit, linearly related to the X-

ray attenuation coefficients of the imaged tissue. On the other side, MRI intensities relate to hydrogen proton densities 

without any direct link to the attenuation coefficients. Previous attempts to compute DRR from MRI have been reported 

in the literature for the cranial [1-3] and the pelvis [4-5] regions. For the cranium region, Ramsey et al. [1-2] assume that 

the MRI intensities in a certain fixed range correspond to bone tissues for their protocols, set them to a value related to 

CT intensities and calculate DRR by ray-casting. For the same region, Yin et al. [3] propose a semi-automatic 

segmentation of the MRI to extract the skin contours and other tissues related to their study (brain tumour), fill these 

regions with different values related to the CT intensities and calculate DRR by ray-casting. More recently, Chen et al. 

[4] emphasize the possibility for the pelvis region to calculate DRR from MRI with a quality similar to DRR calculated 

from CT, based on manual segmentation of the bone tissues on the MRI and ray-casting. Finally, again after a manual 

segmentation of the bones in the pelvis region, Kapanen et al. [5] propose a model to estimate the Hounsfield values 

from the MRI intensities within the segmented bone region and calculate the DRR by ray-casting. All the methods 

require however prior segmentations of anatomical structures on the images, or assume thresholds values for well-

defined regions of interest and recording protocols. 
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Our general objective is therefore to develop an automatic method to estimate CT intensities and calculate DRR from 

MRI. This paper was initially motivated by subject-specific volumetric data visualisation in correspondence to virtually 

physiological human (VHP) models. In our research-driven project, the objective is to develop a general method for MRI 

visualization, which is not region-dependant and not requiring anatomical segmentations. The application is in the field 

of simulating and assisting regional anaesthesia in virtual environments [6,7]. Within this framework, this paper intends 

to present the proof-of-concept for an automatic intensity-based approach to compute DRR from T1-weighted MRI. 

Three types of tissue have distinct X-ray attenuation coefficients and are usually visible on conventional radiographs: 

cortical bone, muscle and subcutaneous fat and bone marrow. These tissues have also distinct proton densities and 

appear therefore with distinct intensity on T1-weighted MRI: the cortical bone in dark, the muscles in dark grey and the 

fat and bone marrow in bright grey. Our specific objective will therefore consist in developing a method to classify the 

voxels in these three categories and in simulating X-ray propagation and attenuation according to this volume 

classification (section 2), and then present the results of our proof-of-concept study (section 3). 

2. MATERIEL AND METHODS 

2.1 Data 

In total, 16 T1-weighted MRI series recorded between 2003 and 2008 at Uniklinik RWTH Aachen (Germany) have been 

collected for the study. The axial or coronal images cover the hip or pelvis region with a resolution ranging from 0.44 to 

1.86 mm/px and an inter-slice gap from 1.2 to 7 mm (Tab. 1). 

2.2 Voxel classification 

Like the cortical bone, air appears also dark on the MRI. Air however has an X-ray attenuation coefficient of almost zero 

and must therefore be differed from bone. Hence, the first step in our processing chain consists in segmenting the 

foreground (body) from the background (air) on the MRI according to the following process (Fig. 1): (1) denoising by 

applying simple thresholding and bilateral filtering [8], (2) detecting edges by applying Canny detection [9] (for axial 

slices) or thresholding using the 5-level Otsu method [10] and selecting the lower threshold (for coronal slices), (3) 

dilating, filling hole and eroding first on the whole image and second on each connected component in the image to 

avoid the fusion between several components like the two legs and (4) removing the smaller connected components. 

The voxel classification is then based on the histogram of the foreground voxels (Fig. 2 for one example). Depending on 

the data, the histogram presents one or two major peaks, the first one corresponding to the dark grey voxels of the muscle 

tissues. The intensity of this first peak is automatically computed by detecting the highest peak in the histogram and 

looking for another potential peak until 66% of its Y value. The peak with the lowest intensity (X value) is selected, as 

pointed by the arrow on Figure 2. 

Table 1.  Characteristics of the MRI series used in the study. 

Number of images Inter-slice gap (mm) Image size (px) Image Resolution (mm/px) Orientation 

48 4.95 512×512 0.88×0.88 coronal 
60 4.40 512×512 0.89×0.89 coronal 
64 5.50 512×512 0.88×0.88 coronal 
70 3.30 480×480 0.80×0.80 axial 
48 5.00 480×480 0.79×0.79 axial 
48 5.00 480×480 0.79×0.79 axial 
100 3.00 480×480 0.94×0.94 axial 
100 3.00 480×480 0.94×0.94 axial 
100 3.00 480×480 0.94×0.94 axial 
100 3.00 480×480 0.94×0.94 axial 
100 3.00 480×480 0.94×0.94 axial 
100 2.00 512×512 0.88×0.88 axial 
140 3.00 1024×1024 0.44×0.44 axial 
45 3.00 256×256 1.60×1.60 axial 
192 1.20 256×256 1.52×1.52 axial 
272 7.00 208×256 1.86×1.86 axial 
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Figure 1. Foreground/background segmentation process on original MRI. 

 

Figure 2. Histogram (bars) and its envelope (red solid line) of the foreground voxels of one MRI set; the blue, red and green 

zones denote the MRI intensities identified respectively as cortical bone, muscles, and fat. The arrow points on the first 

major peak, used for the calculations in our study. 

The voxel classification is then based on the histogram of the foreground voxels (Fig. 2 for one example). Depending on 

the data, the histogram presents one or two major peaks, the first one corresponding to the dark grey voxels of the muscle 

tissues. The intensity of this first peak is automatically computed by detecting the highest peak in the histogram and 

looking for another potential peak until 66% of its Y value. The peak with the lowest intensity (X value) is selected, as 

pointed by the arrow on Figure 2. 

Although very important for the computation of radiographs due to its high attenuation coefficient, the volume of cortical 

bone is nevertheless limited, not leading to any particular peak on the histogram. Similarly, the volume of fat did not 

appear significantly on the histograms of some series. The thresholds between the cortical bone and the muscle voxels 

and between the muscle and the fat voxels, located on each side of the detected peak, could however be estimated 

directly from the intensity of this peak. To draw such inferences, the thresholds have been manually identified by an 

expert for the 16 MRI sets and the intensities values of these thresholds vs. the intensity of the peak have been plotted 

(Fig. 3); a correlation of 0.97 has been observed in both cases. 
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Figure 3. Values of the bone-muscle intensity threshold (left) and muscle-fat intensity threshold (right) vs. intensity of the 

first major histogram peak (points) and regression lines (solid line). 

Linear regressions, also plotted on Figure 3, performed on these points provide prediction models to estimate the bone-

muscle and muscle-fat thresholds from the first peak intensity according to equations (1) and (2): 

 Thbm = 0.7015 x Ip – 0.01246 (1) 

 Thmf = 1.072 x Ip + 0.06318 (2) 

where Thbm and Thmf represent the bone-muscle and muscle-fat thresholds and Ip the intensity of the first major peak. 

Using these linear models, the bone-muscle and muscle-fat thresholds could be respectively estimated with root mean 

square (RMS) errors of 0.01 and 0.02 on the normalised MRI intensity (Tab. 2). 

The Hounsfield scale, used for the CT intensity, is linearly related to the attenuation coefficient. Each voxel intensity can 

therefore be changed to the normalised Hounsfield value corresponding to its label. In practise however, the relative 

intensity can be adjusted depending on the tissue to be highlighted on the DRR. Typically, the intensity for the bone, 

muscle and fat voxels, thereafter Ib, Im and If, have been set respectively to 1, 0.1 and 0.05 in our simulations. The 

remaining voxels (i.e. background), have been set to 0. 

From the voxel block filled with desired intensities, DRR can finally be simulated for any orientation using a ray-caszing 

technique. For each DRR pixel, the intensity I is computed as: 

 I = Tf x If + Tm x Im + Tb x Ib (3) 

where Tf, Tm and Tb represent the  thickness of the fat, muscle and bone tissues crossed by the ray. 

2.3 Proof-of-concept evaluation  

The method has been evaluated on the 16 MRI sets described in Table 1. As these sets have been already used to design 

the models in equations (1) and (2), evaluation has been made through a leave-one-out process: after discarding one 

series, new equations (1) and (2) have been computed on the 15 remaining series as presented in the previous section. 

The bone-muscle and muscle-fat thresholds of the discarded series have then been determined from these equations. The 

process has been repeated 15 times, discarding each series one after the other. By this method, the models of equations 

(1) and (2) are replaced alternatively by 16 different models for our evaluation. The standard deviations of the two 

coefficients for the bone-muscle threshold models are respectively 0.019 and 0.04 and for the muscle-fat threshold 

models 0.025 and 0.04. 

Table 2.  Goodness of fit values of the bone-muscle and muscle-fat threshold estimations in normalised intensity units. 

Threshold 
Correlation 

coefficient 

Sum of squared 

residuals 

Root mean square 

error 

Bone-Muscle 0.9656 0.002318 0.01287 

Muscle-Fat 0.9666 0.005242 0.01935 
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For each series, the background/foreground segmentations have been qualitatively checked, the voxel classification has 

also been qualitatively evaluated and anterior-posterior DRR have been computed and qualitatively checked. 

3. RESULTS 

The background/foreground segmentations have been checked qualitatively, 9 series presenting excellent segmentations, 

4 were reasonably good despite some segmentations failures on some slices and 3 presenting either significant tissue 

regions labelled as background or the contrary. Figure 4 presents the results for an axial MRI image and Figure 5 for a 

coronal one.  

The voxel classification on the 16 series has also been evaluated qualitatively. In regions such as the legs where the three 

tissues are dominant, a good general classification was observed (Fig. 6). In other regions such as the pelvis area 

presenting thinner cortical bones and other types of tissues, more classification failures were observed. 

Anterior-posterior DRR have been computed for the 16 series and qualitatively checked. Three series were hardly 

interpretable, while the other were interpretable, but with varying quality. Figure 7 middle and right depict two examples 

with higher and lower quality. Even though not completely similar to conventional radiograph (Fig. 7 left), 

characteristics such as skeleton projection are visible. A lateral DRR has also been computed in the region of the 

proximal femur to compare the result of our method with the method proposed by Kapanen et al. [5] (see Fig. 8). The 

proximal femur projection presents the same characteristics although the general quality remains slightly lower. 

   
Figure 4. Axial raw MRI of the legs (left) and results of the Canny detection (middle) and final foreground-background 

segmentation (right). 

   
Figure 5. Coronal raw MRI of the legs (left) and results of the Otsu thresholding (middle) and final foreground-background 

segmentation (right). 

 

Figure 6. Axial MRI of the legs (original visible in Figure 4 left) where the intensities of the pixels identified as background, 

cortical bone, muscles and fat have been set respectively to 0, 1, 0.2 and 0.1. 
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Figure 7. Conventional anterior-posterior radiograph (left) and two anterior-posterior DRR computed from two different 

MRI series for the pelvis region with intensities for the bone, muscle and fat voxels respectively set to 1, 0.1 and 0.05 

(middle and right). 

  
Figure 8. Lateral DRR computed from MRI with the method proposed in this study, with intensities for the bone, muscle 

and fat voxels respectively set to 1, 0.08 and 0.04 (left) and lateral DRR extracted from Kapanen et al. [5] (right). 

4. DISCUSSION 

The first important point to highlight is that the quality of the DRR relies directly on the quality and resolution of the 

underlying MRI. Sets with high noise and high thickness between slices are likely to produce low quality DRR, being an 

intrinsic limitation of this visualisation. This limitation could be observed on our case, where MRI sets with low 

resolution or high noise produced hardly interpretable DRR (Fig. 7 right, in the case of high noise). Related to this issue, 

our approach estimates also unique thresholds for a whole MRI set. This can be problematic when brightness is not 

homogeneous across all the images or within the images themselves, which happens regularly for MRI. This problem 

could be solved either by pre-processing the images to homogenize the brightness or by developing adaptive 

thresholding estimations by regions based on our method. In our case, inhomogeneous brightness has indeed been 

observed on several MRI sets (see Fig. 5 left). Although the segmentations of the background/foreground seemed of 

good quality in general, some failures were reported due to this issue. Additionally, the manual expert thresholding had 

to be a trade-off between the bright and dark regions, leading to voxels wrongly classified. These observations limit our 

modelling and affect the quality of the generated DRR at the current state. 

Another intrinsic limitation is the region of interest of the MRI set. If the region is too limited and does not encompass a 

body region where conventional X-ray could be calculated, the resulting DRR could be difficult to interpret as not 

referring to any known imaging of the body. 

Finally, the method described in this study applies only for T1-weighted MRI. Further work is required to extend the 

principle presented here to other types of MRI and to validate the method on sets not used to design the model. 

We decided to classify the tissues into three types corresponding to identifiable MRI intensities and having distinct 

attenuation coefficients, usually identifiable on conventional radiographs. While the three tissues appeared in general 
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well classified, all the other tissues were classified in one of the three categories, such as the small white artefacts on 

Figure 6. As another illustration, bladder fluid, dark on T1-weighted MRI, is mainly classified as bone, leading to bright 

intensities on the DRR, as visible on Figure 7 (middle). This is a limitation of intensity-based approach as proposed in 

this study. Morphological considerations may complement this approach to classify more robustly the various tissues 

relevant for DRR calculation. 

Despite these limitations, our study shows that bone-muscle and muscle-fat thresholds could interestingly be related to 

the intensity of the muscle tissue peak on the histogram. The models proposed in the article show a good reconstruction 

level, with RMS errors below 0.02 in normalised intensity unit. As DRR and X-rays in general rely primarily on the 

cortical bone tissue, this ensures interpretable DRR. Indeed, the DRR computed as visible on Figure 7 middle approaches 

interestingly conventional radiographs. It is moreover possible to emphasize one type of tissue by adapting the relative 

intensities of the modified MRI. Promising results are also observed in comparison to results proposed by Kapanen et al. 

[5], based on manual segmentations of the bone (Fig. 8). 

5. CONCLUSIONS AND FUTURE WORK 

Despite limitations, this study validates the proof-of-concept to simulate radiographs from MRI without manual 

segmentations. As mentioned earlier, this method may not be applicable for every MRI set recorded in clinical routine, 

but opens an interesting complementary visualisation for PACS servers. Future work consists in validating more deeply 

the method, making it more robust and generalise it other types of MRI as discussed earlier in order to provide an 

alternative tool for PACS clients. 
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