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ABSTRACT

We present a novel approach for tracking space-filling features, i.e. a
set of features which covers the entire domain. In contrast to previous
work, we determine the assignment between features from successive
time steps by computing a globally optimal, maximum-weight, maximal
matching on a weighted, bi-partite graph. We demonstrate the method’s
functionality by tracking dissipation elements (DEs), a space-filling
structure definition from turbulent flow analysis. The ability to track
DEs over time enables researchers from fluid mechanics to extend their
analysis beyond the assessment of static flow fields to time-dependent
settings.
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1 INTRODUCTION

The analysis of time-varying phenomena is a central aspect of scientific
visualization. In this context, time-dependent data is typically given
as a series of T ∈ N discrete snapshots {S(t)}1≤t≤T , each of which
captures the underlying system’s state at time t. In order to shed light
into the temporal evolution of objects, it is essential to automatically
identify corresponding objects from successive time steps, a process
called feature tracking.

While classical feature tracking approaches focus on meaningful
structures, which cover only a small fraction of the data domain (cf.,
e.g. [3]), we concentrate on space-filling structures. These partition
the entire input domain; every data point inside the domain is assigned
to exactly one feature object.

This extension complicates the tracking, since the number of potential
matches for every feature object grows and the assignment might be am-
biguous: neighboring features might literally “compete” for suitable as-
signments. To resolve these issues, we model the tracking as a weighted,
bi-partite graph matching problem between objects of successive time
steps. The edge weights encode feature similarity. The solution is a
globally optimal assignment with respect to the chosen similarity metric.

While our work targets space-filling features in general, it is
motivated by a close collaboration with domain experts from fluid
mechanics, who are interested in a specific type of feature, namely dis-
sipation elements (DEs) [4]. We use DEs to evaluate our approach.
DEs are tightly related to the notion of the 3D Morse Smale Complex
(MSC) [1]; in fact, according to their definition, DEs are equivalent to
the 3D Morse Smale cells. Our goal is to extend the DE analysis, which
has focused on isolated time steps so far, to a time-varying setting.

2 FEATURE TRACKING BY WEIGHTED MATCHING

Structures in each individual time step t are defined as feature objects
O(t)

i . Temporally cohesive features are then defined by matching feature
objects in consecutive time steps, the resulting paths are of the form
P=(O(t)

i0
,O(t+1)

i1
,...,O(t+k−1)

ik−1
).
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Given two sets of feature objects from two consecutive time steps,
our approach consists of the following steps: First, we build a matching
graph containing one node per O(t)

i and edges whose weights correspond
to the similarity of the two adjacent objects. Second, we compute a
maximum-weight, maximal matching providing a globally optimal
solution for this bi-partite graph.

2.1 Building a Bi-Partite Graph
To build the matching graph, we consider the feature objects of two
consecutive time steps. We set

U={O(t)
i }1≤i≤nt and V ={O(t+1)

j }1≤ j≤nt+1 .

Next, we compute for every pair (u,v)∈U×V the similarity c(u,v) of the
corresponding feature objects, which is used as edge weight in the match-
ing graph. The similarity metric is designed to yield values in [0...Cmax],
where Cmax corresponds to the maximum overall similarity. We include
only edges with c(u,v)>0. These steps are illustrated in Figure 1.
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Figure 1: Illustration of the matching graph construction.

Currently, we use the normalized volume overlap of two feature
objects to estimate similarity. To this end, we compute the intersection
of the point sets associated with the feature objects and normalize it
with the size of the larger point set:

c(u,v)=
|u∩ v|

max(|u|, |v|)
.

In order to avoid a full-scale comparison for all possible pairs of objects,
we separate this process into a broad phase and a narrow phase. First,
we check for every combination of feature objects if their bounding
boxes overlap. This is done using an efficient box intersection test
proposed in [5] and available in the CGAL library. We then compute
the similarity of those objects as described above if and only if their
bounding boxes overlap. The intersection is done by using the set
intersection operation of the C++ STL. If c(u,v)>0, an edge between
the corresponding nodes with appropriate weight is inserted; for all
other non-overlapping combinations the edges are not explicitly stored
and their weight is assumed to be 0.

Due to the fact that most of the algorithms which solve the matching
problem work on quadratic matrices, we assume the node sets U and

143

IEEE Symposium on Large Data Analysis and Visualization 2015
October 25–30, Chicago, Il, USA
978-1-4673-8517-6/15/$31.00 ©2015 IEEE



V to be of the same size. If they are not, we introduce pseudo-nodes
to obtain a quadratic matrix. Every feature which could not be assigned
to the next or the previous time-step is matched to a pseudo-node and
hence is assumed to participate in an event.

The solution of the linear sum assignment problem (LSAP)
appropriate to this bi-partite graph indicates the feature correspondence
between the given time steps. While the currently used similarity metric
of our framework is the normalized volume overlap of two features,
the implementation is exchangeable with other metrics which might
be more appropriate if another feature definition is employed.

2.2 Computing a Maximum-Weight, Maximal Matching
Determining a maximum-weight, maximal matching in a bi-partite
graph means finding a subset of edges such that every node coincides
with exactly one edge and the sum of edge weights is maximal. As this
is a well-studied problem in combinatorial optimization, there is a large
range of approaches for finding a globally optimal solution.

Based on the structure of our domain problems, we chose the
pseudo-flow algorithm by Goldberg and Kennedy with a complexity of
O(
√

nmlog(nCmax)) and adapted it to our purpose [2]. The algorithm
is based on the idea that a LSAP can be solved by transforming it into
a flow network and solving the corresponding maximum-weight flow
problem. To transform a bi-partite graph G into a flow network N, a
source node and a sink node are introduced, connected by an arc to every
node in U and V , respectively. The arc set of N consists of the edges of
G maintaining their weight and the arcs connected to the source or the
sink obtaining a weight of 0. All arcs are assigned a capacity of one, i.e.
they could be used only once in the solution. The assignment problem
can be solved by finding a maximum flow with cardinality n, which
induces a maximum weight, where n denotes the cardinal number of U
and V . A valid flow has to fulfill the flow conservation constraints and
the capacity constraints which require that the total outgoing flow of a
node must equal its total influx except for the source and the sink and
that the flow is non-negative and does not exceed capacity. A pseudo-
flow fulfills the capacity constraints but violates the flow conservation
constraints. In the employed algorithm, a pseudo-flow is turned into a
feasible flow by finding alternating paths and interchanging assigned
and unassigned edges along this path. An alternating path is a path in the
flow network, which alternates between assigned and unassigned arcs.
For a detailed description of the pseudo-flow algorithm, we refer to [2].

3 RESULTS

We evaluated our method on data sets resulting from a direct numerical
simulation (DNS) of a homogeneous, isotropic turbulence inside a box;
DEs are computed in a pre-processing step. We considered four data
sets: 128hr, 128lr, 256, 512 with a spatial resolution of 1283, 1283,
2563, and 5123, respectively. Each of the first three data sets contains
2,000 time steps. The 512 case contains 100 time steps. For all cases
exept the 128hr every 10-th time step has been written to disk. The
128hr case is written out for every simulation step.

The correlation between the node and edge counts for the constructed
matching graphs of these data sets suggests a strong linear relationship.
The median of edges per node in the four cases is 2, 4, 4, and 5 for
the 128hr, 128lr, 256, and 512 cases, respectively. Thus, the matrix
representing the matching graph is sparse.

Tracking performance is very hard to measure exactly. To aggravate
the situation, there is no ground truth against which to compare the
results. At the same time, a test on synthetic data would have limited
expressiveness since it is hard to model similar dynamics. Hence,
we use the fraction of tracked volume data as a proxy for tracking
performance. To this end, we relate the number of grid points which
have been assigned to the next time step to the overall number of points
contained in DEs. In a perfect setting, where every feature could be
correlated to one or multiple features in the other time step, one would
expect the tracked fraction to be 100%. If a birth or death event occurs,
the tracked fraction should be slightly below 100%.
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Figure 2: Overview of global tracking quality measured by the fraction
of tracked points per data set.

Figure. 2 shows the resulting fraction of tracked points. The mean
tracked fraction over the entire temporal range is 99.40%, 96.33%,
97.24%, and 97.86% for the 128hr, 128lr, 256, and 512 case, respec-
tively. In all cases, the missing percentage is attributed to sudden topolog-
ical changes in the underlying gradient field which lead to discontinuous
changes in structure of dissipation elements. In its current implementa-
tion, our framework does not include a dedicated event detection, which
should be resolved in future work. However, the tracking is able to
establish connections between successive time steps for more than 96%
of the grid points. The differences in performance between the 128hr
and the other cases can be explained with their temporal resolution.

4 CONCLUSION AND FUTURE WORK

We have presented a novel approach for feature tracking which is based
on solving a matching problem between successive time steps. Com-
pared to classical methods which have been based on greedy strategies
so far, our approach facilitates the tracking of space-filling structures
and yields a globally optimal solution for the correspondence of two
consecutive timesteps. The proposed method enables fluid mechanics
researchers to monitor and assess time-dependent characteristics of DEs.

Our current, purely matching-based approach is not able to detect
events between multiple features; assignments have to be one-to-one.
However, the frequency of events, such as splits and merges, and the
complete temporal evolution of every feature, are of central interest to our
domain experts. Thus, we are investigating options to resolve the iden-
tification of these events while keeping the matching-based approach.

Another aspect is the workflow’s overall performance. The machting
algorithm and the entire tracking code are not yet running in parallel.
This should also be solved to scale the tracking to larger data sets.
Additionally, we plan to investigate other similarity metrics appropriate
to DEs or other space-filling structures.
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