Correlating Sub-Phenomena in Performance Data in the Frequency Domain

Tom Vierjahn^{1,4}, Marc-André Hermanns^{3,4}, Bernd Mohr^{3,4}, Matthias S. Müller^{2,4}, Torsten W. Kuhlen^{1,4}, Bernd Hentschel^{1,4} ¹ Visual Computing Institute, RWTH Aachen University, Germany

² Chair for High-Performance Computing, RWTH Aachen University, Germany

³ Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Germany

⁴ JARA-HPC, Aachen, Germany

1 Introduction

Finding and understanding correlated performance behaviour in high-performance computing applications is

- a time-consuming task, but
- · key in understanding and optimization.

2 Performance Data

- Performance profiles store data (e.g., execution time) per system resource (e.g., cores, threads, ...).
- These can be arranged in a Cartesian space, the system topology (e.g., cores x threads)

- Thus, we propose to use
- · automatic correlation analysis in the frequency domain
- · allowing for filtering-out known sub-phenomena
- in order to detect new, unknown phenomena.
- Performance data thus constitutes a space domain signal x : location in the system topology $v(\mathbf{x})$
- for which we can compute a spectrum k: frequency $V(\mathbf{k})$

3 Automatic Correlation Analysis

0

Pearson correlation

Computing filtered correlation (cosine-weighting, cross-correlation):

I

$$\begin{split} W_i^2(\mathbf{k}) &= \frac{k_i^2}{\mathbf{k}^\top \mathbf{k}} \quad , \quad W_i^2(\mathbf{0}) = 0 \\ g_{y,z} &= \mathcal{F}^{-1} \Big[\sum_i f_i \cdot W_i^2(\mathbf{k}) \cdot V_y^*(\mathbf{k}) \cdot V_z(\mathbf{k}) \Big](\mathbf{0}) \\ r_f &= \frac{g_{a,b}}{\sqrt{g_{a,a} \cdot g_{b,b}}} \end{split}$$

4 Interactive Visualization, Results

Interactive analysis tool inspired by Cube and ParaProf:

Over-Views

Efficient analysis with little memory overhead:

Code	Threads	Size	head	≠ 0	Analysis
NEKBONE	1,835,008	8.5 GB	0.6 MB	624	52.3 s
psOpen	65,384	1.0 GB	2.0 MB	2,031	1.8 s
Sweep3D	65,384	0.4 GB	53.1 kB	850	0.6 s

Acknowledgements

This work has been partially funded by the German Federal Ministry of Research and Education (BMBF) under grant number 01IH13001D (Score-E), and by the Excellence Initiative of the German federal and state governments.

pvt performance visualization toolkit

Correl

Visual Computing Institute Virtual Reality & Immersive Visualization Prof. Dr. Torsten W. Kuhlen

