
Correlating Sub-Phenomena in Performance Data in the Frequency Domain

Tom Vierjahn1,4,∗ Marc-André Hermanns3,4 Bernd Mohr3,4

Matthias S. Müller2,4 Torsten W. Kuhlen1,4 Bernd Hentschel1,4

1 Visual Computing Institute, RWTH Aachen University, Germany
2 Chair for High-Performance Computing, RWTH Aachen University, Germany

3 Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
4 JARA – High-Performance Computing, Germany

Abstract

Finding and understanding correlated performance behaviour of the
individual functions of massively parallel high-performance com-
puting (HPC) applications is a time-consuming task. In this poster,
we propose filtered correlation analysis for automatically locating
interdependencies in call-path performance profiles. Transform-
ing the data into the frequency domain splits a performance phe-
nomenon into sub-phenomena to be correlated separately. We pro-
vide the mathematical framework and an overview over the visual-
ization, and we demonstrate the effectiveness of our technique.

Index Terms: D.2.8 [Software Engineering]:
Metrics/Measurement—Performance measures, I.5.4.m [Pat-
tern Recognition]: Applications—Signal processing, I.6.9
[Simulation, Modeling, and Visualization]: Visualization

1 Introduction

Optimizing an application so that it efficiently uses the compute
power of a modern high-performance computing (HPC) system re-
quires powerful tools for performance analysis. Insight into cor-
related performance behaviour is a key part in understanding and
thus optimizing the complex behaviour of large-scale simulations.
While visual exploration of acquired performance data is a valu-
able asset to locate correlations, the overall search space is typically
large due to the number of performance metrics analysed by mod-
ern tools and due to the complexity of modern HPC applications.

Performance visualization is an active research field [1]. How-
ever, even major tools like Boxfish [2], VizTorus [3], Cube [4] and
ParaProf [5] do not provide automatic correlation analysis. Only
the latter allows for manual inspection of correlation among up to
four different sections of the performance data.

In order to facilitate instant identification of code regions that
interact with and influence one another, we propose to use auto-
matic correlation analysis considering every performance metric
and every code region stored in a performance profile. By using
the frequency domain, performance phenomena are split into sub-
phenomena that can be efficiently analysed separately. That way,
newly discovered sub-phenomena can be traced through the data
without being obfuscated by already known and understood ones.

2 Performance Profiles, System Topology, Spectra

A call-path profile summarizes an HPC application’s behaviour over
a complete analysis run. Performance data is acquired and stored
according to specific aspects, the performance metrics m ∈ M ,
e.g., execution time, number of function calls issued, or bytes
transferred; for the application’s functions in their individual ex-
ecution contexts, i.e., call paths c ∈ C , considering caller/callee

∗e-mail: vierjahn@vr.rwth-aachen.de

2 1 2 5 2 1 2 5
0 0 0 0 0 0 0 0
2 1 2 5 2 1 2 5
0 0 0 0 0 0 0 0
2 1 2 5 2 1 2 5
0 0 0 0 0 0 0 0
2 1 2 5 2 1 2 5
0 0 0 0 0 0 0 0

x1

x2
vm0,c0

5 0 2 0 10 2 0
0 0 0 0 00 0 0
0 0 0 0 00 0 0
0 0 0 0 00 0 0
5 0 2 0 10 2 0

0 0 0 0 00 0 0
0 0 0 0 00 0 0
0 0 0 0 00 0 0

k1

k2
4 · |Vm0 ,c0 |

2 1 2 5 2 1 2 5
2 1 2 5 2 1 2 5
2 1 2 5 2 1 2 5
2 1 2 5 2 1 2 5
2 1 2 5 2 1 2 5
2 1 2 5 2 1 2 5
2 1 2 5 2 1 2 5
2 1 2 5 2 1 2 5

x1

x2
vm1,c1

3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0
3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0
3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0
3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0

x1

x2
vm2 ,c2

Figure 1: Severity view vm0 ,c0 exposing variation, its scaled magnitude
spectrum 4 · |Vm0,c0 |, and two other severity views vm1 ,c1 and vm2 ,c2 .

relationship; for the individual system resources s ∈ S that exe-
cuted the code. Thus, a call-path profile constitutes a mapping
v : M ×C × S 7AR, with v(m,c,s) yielding a severity.

During analysis, by selecting a metric-call-path pair (m,c), ana-
lysts specify a severity view vm,c, i.e., a mapping

vm,c : S 7AR , such that v =
⋃

m∈M

⋃
c∈C

vm,c ,

with vm,c(s) yielding the severity for the selected pair (m,c) on a
system resource s. The individual severities in such a view can later
be visualized in a 3D viewport for detailed examination.

Taking into account the actual compute node, CPU core, and
hardware thread associated to an s ∈ S , naturally arranges the
vm,c(s) in a 3D Cartesian space T – the system topology. Fig. 1,
left, exemplary shows severities arranged in a 2D system topology.

Further information like the network topology can be used to
extend T meaningfully to an n-dimensional system topology [6].
Thus, given the dimension sizes di ∈ N, i = 1, . . . ,n, an injective
mapping T : T 7A S ,T = [0,d1)× . . .× [0,dn) exists, with T (x)
yielding a system resource for each location x in the system topol-
ogy T . Consequently, vm,c(x) ..= vm,c

(
T (x)

)
is used as a shorthand.

Now, vm,c(x) constitutes a discrete space-domain signal. Thus, a
spectrum Vm,c : K 7AC in the frequency domain K ⊂Zn, |K |= |T |,
can be computed in O(|T | log |T |) time [7] using discrete Fourier
transform (DFT) F via Vm,c(k) = F [vm,c(x)](k). Vm,c for each non-
zero vm,c is pre-computed. Since Vm,c is Hermitian, i.e., Vm,c(−k)=
V ∗m,c(k), with V ∗m,c denoting the complex conjugate of Vm,c, only
0.5 · |T |+ 2n−1 non-redundant values need to be stored. Fig. 1,
second from left, shows the magnitude spectrum |Vm,c| of the ex-
emplary severity view, scaled by 4 so that only integers are shown.

3 Automatic Correlation Analysis

Pearson’s correlation of two vm0,c0 ,vmi,c j in the system topology
yields a useful indicator for correlated performance phenomena in
O(|T |) time. However, that approach has shortcomings: first, it
does not detect performance phenomena that are shifted in T ; sec-
ond, already known sub-phenomena may obfuscate new ones. The
former can be addressed in T by using cross correlation, however
only in O(|T |2) time. The latter cannot be addressed in T at all.

Fig. 1 shows an example. The severity view vm0,c0 reveals two
sub-phenomena: an imbalance along x1 with two peaks, and one
along x2 where the resources associated to every second x2 run idle.

Figure 2: Visualization of two correlated severity views, rf(·) =−1.

The latter resembles an intentional imbalance due to, e.g., using
only every second thread in order to utilize CPU caches more effi-
ciently. Considering the remaining two severity views, Pearson’s
correlation yields r(vm0,c0 ,vm1,c1) ≈ 0.46 and r(vm0,c0 ,vm2,c2) ≈
0.76. That way, the already known, intentional imbalance obfus-
cates the presence of the said imbalance along x1 in vm1,c1 .

Transforming the severity views into the frequency domain
facilitates efficient use of cross correlation ? for detecting
shifted phenomena and for filtering out known sub-phenomena
in O(|T | log |T |) time. Let vm,c denote the mean severity and
let ṽm,c(x) = vm,c(x)− vm,c denote only the varying part of the
severity view vm,c. Then, the cross correlation theorem yields
gma,cb,my,cz(∆x) = ṽma,cb ? ṽmy,cz = F −1[Ṽ ∗ma,cb

(k)Ṽmy,cz(k)](∆x) for
the cross correlation function g : Zn

AR of the severity views
vma,cb ,vmy,cz , with F −1 denoting the inverse DFT.

In order to suppress individual sub-phenomena, a filter Wi(k) ∈
[0,1] is defined for each axis i of T such that Ṽ ∗ma,cb

(k)Ṽmy,cz(k) =
∑

n
i=1 W 2

i (k)V
∗
ma,cb

(k)Vmy,cz(k). Cosine weighting

Wi(k 6= 0) = ki · ‖k‖−1 , Wi(0) = 0 , k =
[
k1 . . . kn

]>
is a straightforward choice fulfilling the above constraint, since ob-
viously ∑

n
i=1 W 2

i (k 6= 0) = 1. Let fi ∈ {0,1} specify whether the
sub-phenomena along axis i shall be considered during correlation
analysis, then a filtered cross correlation function gf is derived with

gf,ma,cb,my,cz(∆x) = F −1[
∑

n
i=1 fiW 2

i (k)V
∗
ma,cb

(k)Vmy,cz(k)
]
(∆x) .

Let now Rf[vma,cb ,vmy,cz](∆x) =
gf,ma ,cb ,my ,cz (∆x)√

gf,ma ,cb ,ma ,cb (0)gf,my ,cz ,my ,cz (0)
if

both involved gf,mi,c j ,mi,c j (0) 6= 0, and Rf[vma,cb ,vmy,cz](∆x) = 0,
otherwise. Let furthermore ∆x′ = argmax∆x Rf[·](∆x), then

rf(vm0,c0 ,vm1,c1) = Rf[vma,cb ,vmy,cz](∆x′) ∈ [−1,1]

yields the filtered correlation of vma,cb and vmy,cz . Values close to 1
are likely caused by similar execution behaviour, values close to -1
are likely caused by interdependencies like synchronization.

Using f1 = 1 and f2 = 0 for filtering out the intentional
imbalance along x2 in the above example (Fig. 1) yields
rf(vm0,c0 ,vm1,c1) ≈ 0.9 and rf(vm0,c0 ,vm2,c2) = 0.0. Thus, our tech-
nique ignores the imbalance along x2 as desired whereas the corre-
lation of the imbalance along x1 is correctly detected.

4 Interactive Visualization

The automatic filtered correlation analysis is integrated into an in-
teractive visualization tool. This has been developed according to
requirements posed by HPC experts. It is inspired by the Cube per-
formance profile browser [4] and by ParaProf’s topology plots [5].
In the visualization (Fig. 2), each system resource is depicted by
a small, bevelled cube, arranged according to the Cartesian system
topology. Each system resource’s severity is rendered colour-coded
onto the respective cube with a user-defined colour map – green
(small) through yellow to red (large) is used as a default.

Table 1: Data Sets, Size, Search Space, Time for Correlation Analysis

Num. Data Num. Correl.
Code Threads Size Overhead vm,c 6= 0 Analysis

NEKBONE 1 835 008 8.5 GB 0.6 MB 624 52.3 s
psOpen 65 384 1.0 GB 2.0 MB 2031 1.8 s
Sweep3D 65 384 0.4 GB 53.1 kB 850 0.6 s

Once the analyst has identified a relevant severity view and set
suitable f1, . . . , fn, correlated severity views are found automati-
cally and presented as a list, odered by rf(·). When the analyst
selects a correlated view from the list, both views are visualized
side by side with a synchronized perspective, enabling direct visual
comparison. The data in both views can be brushed and filtered to
provide better insight into the performance phenomena.

5 Results

The proposed automatic correlation analysis efficiently reduces the
size of the search space when looking for correlated severity views
by suggesting a list of correlated views. The approach scales well
even to performance profiles from massively parallel analysis runs.
Tab. 1 lists the overhead for storing Vm,c instead of vm,c, the number
of non-zero severity views, and the time required for finding all
views that are correlated to a single vm,c.

6 Conclusion

To our knowledge, the proposed system is the first that automati-
cally finds and visualizes correlation in profile-based data. Known
performance-phenomena can be suppressed. Our system thus ef-
fectively indicates connections between different aspects of an ap-
plication’s performance behaviour. HPC experts rate this ability
as a crucial factor in analysing extreme-scale parallel applications.
Working in the frequency domain imposes only a negligibly small
memory overhead. Correlation analysis has been rated remarkably
and sufficiently fast. Although our system aims at analysing per-
formance data, it is very likely that filtered correlation analysis is
applicable to other scalar data arranged in Cartesian grids.

Acknowledgements

This work has been partially funded by the German Federal Min-
istry of Research and Education (BMBF), and by the Excellence
Initiative of the German federal and state governments through the
Jülich Aachen Research Alliance – High-Performance Computing.

References

[1] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer, “State of the Art of Performance Visual-
ization,” in EuroVis - STARs, 2014.

[2] A. G. Landge, J. A. Levine, A. Bhatele, K. E. Isaacs, T. Gamblin,
M. Schulz, S. H. Langer, P.-T. Bremer, and V. Pascucci, “Visualiz-
ing network traffic to understand the performance of massively parallel
simulations,” IEEE TVCG, vol. 18, no. 12, pp. 2467–2476, 2012.

[3] L. Theisen, A. Shah, and F. Wolf, “Down to earth: How to visualize
traffic on high-dimensional torus networks,” in Proc. 1st Workshop Vi-
sual Performance Anal., 2014, pp. 17–23.

[4] M. Geimer, P. Saviankou, A. Strube, Z. Szebenyi, F. Wolf, and B. J. N.
Wylie, “Further improving the scalability of the Scalasca toolset,” in
10th Intl. Conf. Appl. Parallel and Scient. Comput., 2012, pp. 463–473.

[5] W. Spear, A. D. Malony, C. W. Lee, S. Biersdorff, and S. Shende, “An
approach to creating performance visualizations in a parallel profile
analysis tool,” in Euro-Par 2011, 2012, pp. 156–165.

[6] M. Schulz, J. A. Levine, P.-T. Bremer, T. Gamblin, and V. Pascucci,
“Interpreting performance data across intuitive domains,” in Proc. 40th
Intl. Conf. Parallel Process., 2011, pp. 206–215.

[7] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proc. IEEE, vol. 93, no. 2, pp. 216–231, 2005.

