header

Profile


photo

Dr. Tobias Rick

Dissertation Title:
Interactive Tracing of Radio Waves and Neuronal Fiber Pathways for Exploratory Visualization in Virtual Reality
2012



Publications


Efficient Rasterization for Outdoor Radio Wave Propagation


Arne Schmitz , Tobias Rick, Thomas Karolski, Torsten Wolfgang Kuhlen, Leif Kobbelt
IEEE Transactions on Visualization and Computer Graphics, Feb. 2011, Vol. 17, Issue 2, pp. 159 - 170
pubimg

Conventional beam tracing can be used for solving global illumination problems. It is an efficient algorithm, and performs very well when implemented on the GPU. This allows us to apply the algorithm in a novel way to the problem of radio wave propagation. The simulation of radio waves is conceptually analogous to the problem of light transport. We use a custom, parallel rasterization pipeline for creation and evaluation of the beams. We implement a subset of a standard 3D rasterization pipeline entirely on the GPU, supporting 2D and 3D framebuffers for output. Our algorithm can provide a detailed description of complex radio channel characteristics like propagation losses and the spread of arriving signals over time (delay spread). Those are essential for the planning of communication systems required by mobile network operators. For validation, we compare our simulation results with measurements from a real world network. Furthermore, we account for characteristics of different propagation environments and estimate the influence of unknown components like traffic or vegetation by adapting model parameters to measurements.




Simulation of Radio Wave Propagation by Beam Tracing


Arne Schmitz , Tobias Rick, Thomas Karolski, Leif Kobbelt, Torsten Wolfgang Kuhlen
Eurographics Symposium on Parallel Graphics and Visualization
pubimg

Beam tracing can be used for solving global illumination problems. It is an efficient algorithm, and performs very well when implemented on the GPU. This allows us to apply the algorithm in a novel way to the problem of radio wave propagation. The simulation of radio waves is conceptually analogous to the problem of light transport. However, their wavelengths are of proportions similar to that of the environment. At such frequencies, waves that bend around corners due to diffraction are becoming an important propagation effect. In this paper we present a method which integrates diffraction, on top of the usual effects related to global illumination like reflection, into our beam tracing algorithm. We use a custom, parallel rasterization pipeline for creation and evaluation of the beams. Our algorithm can provide a detailed description of complex radio channel characteristics like propagation losses and the spread of arriving signals over time (delay spread). Those are essential for the planning of communication systems required by mobile network operators. For validation, we compare our simulation results with measurements from a real world network.




Beam Tracing for Multipath Propagation in Urban Environments


Arne Schmitz , Tobias Rick, Thomas Karolski, Leif Kobbelt, Torsten Wolfgang Kuhlen
3rd European Conference on Antennas and Propagation, to appear
pubimg

We present a novel method for efficient computation of complex channel characteristics due to multipath effects in urban microcell environments. Significant speedups are obtained compared to state-of-the-art ray-tracing algorithms by tracing continuous beams and by using parallelization techniques. We optimize simulation parameters using on-site measurements from real world networks. We formulate the adaption of model parameters as a constrained least-squares problem where each row of the matrix corresponds to one measurement location, and where the columns are formed by the beams that reach the respective location.




Disclaimer Home Visual Computing institute RWTH Aachen University