Bachelor and Master Theses

We permanently offer proposals for bachelor and master thesis projects in all areas across our research activities (see our research areas page) and related subjects which cover most topics in Virtual Reality and Scientific Visualization. The thesis topics are usually specified in cooperation with one of our research assistants and/or Prof. Kuhlen taking into account the student's individual interests and his/her previous knowledge as well as the current research agenda of the Virtual Reality group (e.g. in terms of ongoing academic or industrial cooperations). So if you are interested in a thesis project in Virtual Reality, please contact us. In order to guarantee a successful completion of the thesis, we usually expect our student to have

  • taken the "Basic Techniques in Computer Graphics" lecture if you are a bachelor student
  • taken the “Virtual Reality” lecture if you are a master student
  • a good working knowledge of C++
  • or an equivalent qualification.
Below you find a (non-complete) list of currently open theses and the respective supervisors to contact.


Master Thesis: Generating co-verbal Gestures for a Virtual Human using Recurrent Neural Networks

Virtual Humans can be embedded into virtual environments to guide the user through scenes and teach or point out interesting areas. Thereby their behavior has a large influence on the authenticity of the virtual environment and the immersion of a user. One important aspect to this behavior is their movement during speech: co-verbal gestures. The goal of this thesis is to design, develop and test a system to generate authentic co-verbal gestures using RNNs, e.g., Long-Short-Term-Memory (LSTM) networks. Training data for these networks will be provided. The system should become part of an already existing larger software suite to embed believable Virtual Humans into our framework.

Prerequisites: Good programming skills in C++; knowledge of Machine Learning Techniques is desirable

Photo: ©USC Institute for Creative Technologies

Contact:
Jonathan Wendt, M.Sc.


Master Thesis: Development and Design of a Point Cloud renderer API for the simulation of seismic and volcanic activity

The Turrialba Volcano has become one of the most active volcanoes in Costa Rica. Scientists at the OVSICORI monitor its activity closely, gathering and collecting great amounts of data on a daily basis. Additionally, to better understand the volcano’s activity, simulation models are being developed. Visualization tools are required to study and analyze all these data together. The goal of this thesis is to design, develop and test a series of visualization and interaction techniques that will serve as the basis for a framework aimed at solving seismic and volcanic related problems. These tools should be encapsulated in an API to allow for rapid prototyping of Virtual Reality-based applications that include (but are not limited to) 3D rendering of- and interaction with simulation and measured data.

Prerequisites: Good programming skills in C++; knowledge of Python is desirable

Photo: ©Victor Chavarría for Ovsicori

Contact:
Dr. Yuen Cheong Law Wan


Disclaimer Home Visual Computing institute RWTH Aachen University